Vladimir P. Zaytsev, ^a Fedor I. Zubkov, ^a* Flavien A. A. Toze, ^b Daria N. Orlova, ^a Maria N. Eliseeva, ^a Dmitry G. Grudinin, ^c Eugeniya V. Nikitina, ^a and Alexey V. Varlamov^a

^aDepartment of Organic Chemistry, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation

^bDepartment of Chemistry, University of Douala, Faculty of Sciences, PO Box 24157, Douala, Cameroon

^cValeant Canada Ltd., 1956 Bourdon St., Montréal, Québec H4M 1V1, Canada

*E-mail: fzubkov@sci.pfu.edu.ru

Received March 30, 2011

DOI 10.1002/jhet.1024 Published online 2 April 2013 in Wiley Online Library (wileyonlinelibrary.com).

The interactions between 4-R-substituted 2-furyl-1,2,3,4-tetrahydroquinolines (synthesized by the Povarov reaction) and a number of alkenes have been investigated. Maleic, dibromomaleic, dichloromaleic, and citraconic anhydrides, as well as acryloyl, methacryloyl, crotonyl, and cynnamoyl chlorides were used as alkene components. It was shown that the initial *N*-acylation of the tetrahydroquinolines was followed by a spontaneous [4+2]-cycload-dition of an *N*-acryloyl substituent to the furan ring. It was established that the intramolecular Diels–Alder reaction of furans is reversible, occurs stereoselectively as *exo*-addition, and led to target epoxylsoindolo[2,1-*a*]tetrahydroquino-lines with moderate yields. Oxidation and aromatization of the synthesized products were carried out.

J. Heterocyclic Chem., 50, E18 (2013).

INTRODUCTION

During the last decade, several new approaches to heterocyclic systems, including the hydrogenated isoindolo[2,1-a] quinoline fragment have been developed [1]. These approaches, as a rule, are notable for the low availability of starting compounds and for moderate yield of target products. All earlier methods of isoindoloquinolines synthesis were summarized in our review [2]. At the same time, such close attention to this system is related to the high and diverse biological activity of derivatives containing an isoindolo [2,1-a]quinoline core [3].

Five years ago, our group suggested synthesizing for the first time epoxyisoindolo[2,1-*a*]tetrahydroquinolines by intramolecular [4+2] cycloaddition of maleic anhydride to 2furylquinolines [4, 5]. According to our previous studies [5], 2-furyltetrahydroquinolines can easily undergo cycloaddition with maleic anhydride at 110°C and with acryloyl chloride at 25°C. Under the above conditions, the Diels–Alder reaction of both dienophiles leads to the single stereoisomer with high yields.

In the current study, we systematically examined the regularities of cycloaddition of maleic, dibromomaleic and citraconic anhydrides (as well as acryloyl, methacryloyl, crotonyl, and cynnamoyl chlorides) to 4-amino- and 4-amido-2-furyltetrahydroquinolines bearing a substituent at the furyl or/and benzene rings.

To begin 4-pyrrolidonyl- and 4-acetamido-substituted 2-furyltetrahydroquinolines **2a–I** and **3a–d**, as well as benzoquinoline **2m**, were synthesized by the Povarov reaction [4–6] based on corresponding furfurylidenanilines **1** and *N*-vinylpyrrolidone or *N*-vinyl-*N*-methylacetamide respectively in ether or dichloromethane with $BF_3 \times OEt_2$ as a catalyst (Scheme 1).

The addition of *N*-vinylamides to azomethines **1** occurs easily at 20° C in ether as well as in dichloromethane. Although 6-substituted quinolines **2a–e** have been

© 2013 HeteroCorporation

February 2013 5-Amido- and 5-Amino-Substituted Epoxyisoindolo[2,1-a]tetrahydroquinolines and 10-Carboxylic Acids: Their Synthesis and Reactivity

described before [4, 5], their $5' \cdot R^3$ -substituted in furan ring derivatives $8 \cdot R^2$ -tetrahydroquinolines and benzoquinolines **2f–m**, **3a–d** were prepared for the first time. The presence of a substituent R^2 at position 8 does not significantly influence the yield of the tetrahydroquinolines **2h,l**. Electron-donating substituents (5'-Me and 5'-Br) in the furan ring decrease the yield of corresponding tetrahydroquinolines

2i,**j**, although withdrawing the 5'-NO₂-group does not affect the yield of **2k** (Table 1).

The amide functionality in tetrahydroquinolines **2a** and **3a** was reduced to the amines: 4-amino substituted quinolines **4** and **5** were isolated, with relatively high yields. According to the ¹H-NMR data, the substituents at C₂ and C₄ in quinolines **2–5** have a *cis*-diequatorial position [6, 7] (${}^{3}J_{2a,3a} = 9.1-11.4$,

 Table 1

 Reaction conditions, diastereomers ratio, and total yield (%) of adducts 6–12 obtained from tetrahydroquinolines 2a–e,h–j,m, 3a–d, 4, and 5.

THQ yield (%	(b) R^1	R^2	R^3	R^4	0–5°C, PhMe Ratio of adducts A/B , yield (%)	110°C, PhMe Adduct, yield (%)	80°C, PhH Adduct, yield (%)
2a (80)	Н	Н	Н	N-2-Oxopyrrolidinyl	6a 5/95 (64)	6aB (58)	10aB (93)
2b (43)	Me	Н	Η	N-2-Oxopyrrolidinyl	6b 18/82 (90)	6bB (58)	10bB (65)
2c (55)	MeO	Н	Η	N-2-Oxopyrrolidinyl	6c 20/80 (97)	6cB (60)	10cB (63)
2d (67)	Cl	Н	Η	N-2-Oxopyrrolidinyl	6d 28/72 (41)	6dB (61)	10dB (70)
2e (72)	F	Н	Η	N-2-Oxopyrrolidinyl	6e 20/80 (95)	6eB (58)	10eB (50)
2f (25)	NO_2	Н	Η	N-2-Oxopyrrolidinyl	a	а	а
2g (45)	MeCO	Н	Η	N-2-Oxopyrrolidinyl	а	а	а
2h (62)	Н	OH	Η	N-2-Oxopyrrolidinyl	a	6hB (82)	10hA/10hB (72) ^b
2i (36)	Н	Н	Me	N-2-Oxopyrrolidinyl	6i 25/75 (69)	6iB (72)	10iB (91)
2j (44)	Н	Н	Br	N-2-Oxopyrrolidinyl	6j 15/85 (35)	6jB (45)	10jB (48)
2k (83)	Н	Н	NO_2	N-2-Oxopyrrolidinyl	a	а	а
2l (96)	Н	CO_2H	Η	N-2-Oxopyrrolidinyl	а	а	а
3a (60)	Н	Н	Η	NMeAc	7a 35/65 (59)	7aB (55)	11aB (49)
3b (64)	Me	Н	Η	NMeAc	7b 13/87 (45)	7bB (71)	11bB (39)
3c (64)	MeO	Н	Η	NMeAc	7c 17/83 (73)	7cB (78)	11cB (71)
3d (63)	F	Н	Η	NMeAc	7d 33/66 (83)	7dB (87)	11dB (65)
4 (81)	Н	Н	Н	N-Pyrrolidinyl	c	8B (69)	
5 (71)	Н	Н	Н	NMeEt	9 35/65 (68)	9B (58)	12B (34)

^aWe could not accomplish the cycloaddition reactions due to poor solubility of THQ **2f**, **2g**, **2k** in toluene or low reactivity of **2h** and **2l**. ^bMixture of diastereomers trans-**10hA**/cis-**10hB** was isolated in ratio 30/70.

^cOnly N-acylation product was separated.

v. INIKIUIIa, and A. v. variali

Scheme 2

 ${}^{3}J_{2a,3e} = 2.5-4.9$, ${}^{3}J_{4a,3a} = 9.1-12.0$, and ${}^{3}J_{4a,3e} = 4.9-7.2$ Hz; see Table 4).

In contrast to our previous article [5], in this study, we discovered that interaction of tetrahydroquinolines 2a-e, i,j, 3a-d, and 5 with maleic anhydride occurs even as low as $0-5^{\circ}$ C in a toluene solution. The resulting epoxyisoindolo[2,1-*a*]quinoline carboxylic acids 6a-e,i,j, 7a-d, and 9 were formed as mixtures of *trans*-(A)- and *cis*-(B)-isomers, shown by position of R^4 and of the 6b,9-epoxy bridge (Scheme 2), with *cis*-(B)-isomers predominating (Table 1).

The cycloaddition of the same reagents occurs stereospecifically in boiling toluene, yielding only *cis*-isomers **6–9B** [5]. Our experiments show that the reflux of isomer mixtures **6dA/6dB**, **6iA/6iB**, **7aA/7aB**, synthesized between 0 and 5° C, leads to the transformation of minor *trans*-isomers **A** into more thermodynamically stable *cis*-isomers **B**. That fact can be explained by the reversibility of the Diels–Alder reaction.

We have previously shown [8] that 4-pyrrolidone-1-yl substituted furylpyrido[*h*]tetrahydroquinolines do not undergo a cycloaddition reaction, either with maleic anhydride (at 110° C) or with acryloyl chloride (at 80° C). On the contrary, the cycloaddition, for example, of maleic anhydride to the isostructural 2-furylbenzo[*h*]tetrahydroquinoline **2m** in a boiling toluene gives the product **6mB** in a yield of 45% (Scheme 2). This can be explained by primary acylation of the more basic nitrogen atom in the pyridine fragment,

which creates sterical hindrances for acylated nitrogen in the tetrahydroquinoline ring and thus inhibits the cycloaddition.

Cycloaddition of acryloyl chloride to tetrahydroquinolines **2a–e,h–j**, **3a–d**, **5** occurs stereoselectively, yielding only *exo-*epoxyisoindolo[2,1-*a*]tetrahydroquinolines **10a–e,h–jB**, **11a–dB**, **12B** in benzene at 80°C (Scheme 2, Table 1). Under the same conditions, the quinoline **2h** forms a mixture of *trans-* and *cis-*diastereoisomers **10hA/10hB** with a 1/2.5 ratio. Labeling of isomeric epoxyisoindoloquinolines **6–12** as *cis-*(**B**)- or *trans-*(**A**)-isomers was based on previously found regularity for analogous systems [9]. The signal of aromatic proton H-1 in ¹H-NMR spectra of *trans-*isomers **6**, **7**, **9A** appears at δ 7.63–8.04 ppm, but this range shifts to δ 8.45–8.69 ppm for *cis-*isomers **6–12B** (Table 5).

Tetrahydroquinoline **2a** (as the most accessible in the series) was used for reactions with citraconic and dihalogenomaleic anhydrides [10] as well as with acryloyl, methacryloyl, crotonyl, and cinnamoyl chlorides.

Citraconic and dihalogenomaleic anhydrides undergo the cycloaddition to 2a in the same way as maleic anhydride. The reflux in toluene with an excess of citraconic anhydride gives *exo*-epoxyisoindoloquinoline **13** in a 51% yield. According to the ¹H-NMR data, the methyl and carboxyl group in this compound are geminal (Scheme 3). *Endo*-orientation of 10-methyl group was established by the presence of a crosspeak between Me-10 and H-10a in

February 2013 5-Amido- and 5-Amino-Substituted Epoxyisoindolo[2,1-*a*]tetrahydroquinolines and 10-Carboxylic Acids: Their Synthesis and Reactivity

¹H-¹H NOESY spectra. As it was described previously [11], cycloaddition leads to the formation of two regioisomers; unfortunately at this moment, we are not able to explain isolation of 10-methyl isomer **13**.

Interaction of quinoline **2a** with dibromomaleic and dichloromaleic anhydrides at ambient temperature gives isoindoloquinoline carboxylic acids (*exo*-adducts) **14a**,**b** with 64 and 83% yields respectively. *Endo*-orientation of halogen atoms in adducts **14** was suggested by analogy to the acid **13**.

Crotonyl, methacryloyl, and cinnamoyl chlorides react with tetrahydroquinoline **2a** in the same manner as acryloyl chloride, yielding *exo*-adducts **15–17** in all cases (Scheme 3). *Endo*-position of the substituents 10-R (Me, Ph) in compounds **15** and **16** results from the coupling constant value ${}^{3}J_{10-exo,10a-endo} = 3.5$ Hz [11].

The esterification of individual isomers of epoxyisoindolo[2,1-*a*]quinoline carboxylic acids **6a**,**i**,**mB**, **7aB**, **13** in the presence of sulfuric acid (Scheme 4) yields the mixture of methyl and ethyl esters of *trans*-**A** and *cis*-**B** isomers of isoindoloquinoline carboxylic acids **18a**–**f**. We believe that this may be related to retrodiene degradation of *cis*-**B** esters during esterification. The ratios of the formation of isomeric esters **18** are shown in Table 2. Predominant *cis*-**B** isomers were separated as individual compounds by fractional crystallization. However, we did not observe the retrodiene degradation of ester **18eB**, **18fB** during esterification of epoxyisoindolo[2,1-*a*]quinoline carboxylic acid **6mB**, **7aB**.

The double bond in the oxabicycloheptene moiety of isoindoloquinolines **10a**,**i**,**mB**, **11aB**, **15–18** was oxidized into *cis*-diepoxides **19a–m** under the action of *m*-CPBA (Scheme 5). *Exo*-position of the oxyran ring in the oxabicycloheptane fragment of compounds **19a–m** definitely results from coupling constant values of doublet signals of the H-1a and H-11c (H-8c and H-8a for compounds **19l,m**) protons. In their ¹H-NMR spectra (Table 6), the

vicinal coupling constants are $J_{1a,11c} = 3.2-3.4$ Hz and $J_{1a,2} = 0$ Hz, which is possible only if these protons have *cis*-position. Thus, both oxygen bridges in compounds **19a–m** are *cis*-oriented, which corresponds well with the literature data for analogous systems [12, 13].

In a H₃PO₄ medium at 85°C, we observed the aromatization of oxabicycloheptane fragment [14] in epoxyisoindoloquinolin carboxylic acids **6a,mB**, **7aB**, **11aB**, as well as in epoxyisoindoloquinolines **10a,i,mB**, **15**, **16**. It is interesting to note that the action of hot phosphoric acid on isoindoloquinolines **20** does not lead to *N*-amide substituent (R^4) elimination, which was observed before for analogous structures by the action of BF₃ × Et₂O at room temperature [8].

In conclusion, this study demonstrated that the tandem acylation/[4+2] cycloaddition reaction of 2-furyltetrahydroquinolines can be carried out with anhydrides of diverse α , β -unsaturated acids apart from maleic anhydride and acryloyl chloride. It was found that the intramolecular Diels– Alder reaction always proceeds as an *exo*-process, and in the case of the kinetic control (0–5°C) leads stereoselectively to a mixture of two diastereomers. Under the thermodynamic control conditions (80–110°C), the cycloaddition is completely stereospecific.

EXPERIMENTAL

All reagents were purchased from Acros Chemical and were used without further purification. Melting points of synthesized compounds were determined in a capillary tube using a SMP 10 melting point apparatus and are uncorrected (Table 3). IR spectra were obtained in KBr pellets using an IR-Fourier spectrometer Infralum FT-801 (Table 3). ¹H-NMR spectra (δ /ppm, *J*/Hz) were recorded on a Bruker WH-400 spectrometer (400 MHz) in CDCl₃ or DMSO-*d*₆ at 27°C and residual signals of solvents (7.26 ppm for CDCl₃ and 2.49 ppm for DMSO-*d*₆) were used as the internal standards (see Tables 4–6). ¹³C-NMR spectra (δ /ppm) were

recorded on a Bruker Advance 600 spectrometer (150 MHz) and the central signal of DMSO- d_6 multiplet (39.7 ppm) was used as the internal standard. The correlations in ¹H-NMR and ¹³C-NMR spectra of synthesized compounds were made relying on COSY-45 and HMQC dimeric spectral data. Mass spectra were obtained on a HP MS 5988 spectrometer (electron impact, 70 eV, direct inlet probe) or on a Finnegan MAT95XL chromatomass spectrometer (Table 7). The Sorbfile plates were used for thin layer chromatography (developed by iodine). The purity of the substances obtained and the composition of the reaction mixtures were controlled by TLC Sorbfil plates. The purification of the final adducts was carried out by column chromatography on Al₂O₃ Fluka-507C (mesh 0.05–0.15 mm) or by fractional crystallization from hexane–ethyl acetate mixture or isopropanol-DMF.

 $(2S^*,4S^*)$ -1,2,3,4-Tetrahydro-2-(2'-furyl)-4-amidoquinolines (2a-m, 3a-d) (Typical procedure). Boron trifluoride etherate 0.63 mL (5 mmol) followed by 23.4 mL (0.22 mol) *N*vinylpyrrolidine-2-one were added to the stirring solution of azomethine 1a-m (0.2 mol) in 100 mL of absolute ether (for 1a-e,i,m), acetonitrile (for 1l) or dry dichloromethane (for 1f-h,j,k) at 25°C. After stirred for 24 h at room temperature (TLC control), 3–4 mL of 25% aqueous ammonia was added to reaction mixture and the solvent was removed under reduced pressure. The residue, viscous brown oil, was purified by column chromatography eluating by ether. Tetrahydroquinolines 2a-m were obtained as white crystals. (2*S**4*S**)-1,2,3,4-Tetrahydro-2-(2′-furyl)-4-(*N*-pyrrolidine-2-one)benzo[*h*]quinoline (2m). ¹H-NMR (DMSO-*d*₆): δ 2.07– 1.99 (m, 2H, 4″-H) 2.39 (dt, 1H, 3*ax*-H, *J*_{2,3*a*} = *J*_{3*a*,4} = 11.0, *J*_{3*a*,3*e*} = 12.2 Hz), 2.41 (ddd, 1H, 3*eqv*-H, *J*_{2,3*e*} = 3.3, *J*_{3*e*,4} = 7.0, *J*_{3*a*,3*e*} = 12.2 Hz), 2.63–2.48 (m, 2H, 3″-H), 3.09 (dt, 1H, 5″B-H, *J*₅″_{A,5}″_B = 9.7 Hz), 3.26 (dt, 1H, 5″A-H, *J*₅″_{A,5}″_B = 9.7 Hz), 4.74 (br s, NH), 4.79 (dd, 1H, 2-H, *J*_{2,3*e*} = 3.3, *J*_{2,3*a*} = 11.0 Hz), 5.89 (dd, 1H, 4-H, *J*_{3*e*,4} = 7.0, *J*_{3*a*,4} = 11.0 Hz), 6.39 (dd, 1H, 3′-H, *J*_{3′,4′} = 3.2, *J*_{3′,5′} = 0.6 Hz), 6.43 (dd, 1H, 4′-H, *J*_{4′,5′} = 1.8, *J*_{3′,4′} = 3.2 Hz), 7.05 (d, 1H, 6-H, *J*_{5,6} = 8.4 Hz), 7.28 (d, 1H, 5-H, *J*_{5,6} = 8.4 Hz), 7.45 (dd, 1H, 5′-H, *J*_{3′,5′} = 0.6, *J*_{4′,5′} = 1.8 Hz), 7.45 (m, 2H, 7-H and 10-H), 7.79–7.75 ppm (m, 2H, 8-H and 9-H).

(25*,45*)-1,2,3,4-Tetrahydro-2-(2'-furyl)-4-aminoquinolines (4, 5). Typical procedure. Lithium aluminium hydride 1.68 g (44.4 mmol) was added to the solution of 0.01 mol of tetrahydroquinoline 2a, 3a in absolute THF (50 mL) and stirred at reflux for 5 h (TLC control). The excess of LiAlH₄ was quenched by ethyl acetate (10 mL). The reaction mixture was poured in 200 mL of water and extracted by ethyl acetate (3 × 50 mL). The extract was dried by magnesium sulfate. Evaporation of the solvent gives tetrahydroquinoline 4 (yield 71% after recrystallization from hexane–ethyl acetate) as white crystals or tetrahydroquinoline 5 (81% after flash chromatography on silica) as yellow oil.

(55*,6a5*,6bR*,95*,10R*,10a5*)-6,6a,9,10,10a,11-Hexahydro-11-0x0-5*H*-6b,9-epoxyisoindolo[2,1-*a*]quinoline-10-carboxylic acids (6a-e,i,jA, 7a-dA, 9A); (55*,6a5*,6b5*,9R*,105*,10aR*)-

	Diastereomers ratio a	nd total yield (%) of isoindo	loquinoline carboxylic acids	s esters 18a–e.	
Acid	6aB	6aB	6iB	13	7aB
Ester	18a	18b	18c	18d	18e
R^3	Н	Н	Me	Н	Н
R^4	N-2-Oxopyrrolidinyl	N-2-Oxopyrrolidinyl	N-2-Oxopyrrolidinyl	N-2-Oxopyrrolidinyl	NMeAc
R^5	Me	Et	Me	Me	Me
R^6	Н	Н	Н	Me	Н
Total yield (%)	98	86	73	80	78
A/B ratio	10/90	9/91	20/80	12/88	0/100

Table 2

6,6a,9,10,10a,11-hexahydro-11-oxo-5*H*-6b,9-epoxyisoindolo [2,1-*a*]quinoline-10-carboxylic acids (6a–e,h–jB, 7a–dB, 8B, 9B); (75*,8aS*,8bS*,11*R**,12S*,12a*R**)-8,8a,11,12,12a,13-hexahydro-7-(*N*-pyrrolidine-2-one)-13-oxo-7*H*-8b,11-epoxybenzo[*h*] isoindolo[2,1-*a*]quinoline-12-carboxylic acid (6mB). Typical procedure.

Method A (leads to the formation of a mixture of isomers A/B)

The solution of 0.43 g (4.36 mmol) of maleic anhydride in 10 mL of toluene was added to furyl substituted amine (4.15 mmol) **2a–e,i,j,m 3a-d**, **5** in 10 mL of toluene at 0-3°C and kept for 3 d at this temperature (TLC control). Separated solids were filtered off and washed with ether, giving mixtures of **A/B** isomers of corresponding isoindoloquinoline carboxylic acids **6**, **7**, **9** as white crystals. Ratio of isomers in the reaction mixtures were determined by ¹H-NMR spectroscopy.

Method B (leads to the formation of the single isomer B).

Solution of corresponding tetrahydroquinoline (4.15 mmol) 2a–e,h–j,m, 3a-d, 4, 5 and maleic anhydride 0.43 g (4.36 mmol) in toluene (20 mL) was refluxed for 3 h. Separated white crystals of target products—isoindoloquinoline carboxylic acids 6a–e,h– j,mB, 7a–dB, 8B and 9B were filtered off after cooling.

(55*,6aS*,6bS*,9*R**,10S*,10a*R**)-6,6a,9,10,10a,11-Hexahydro-5-(*N*-pyrrolidine-2-one)-1-hydroxy-11-oxo-5*H*-6b,9-epoxyisoindolo [2,1-*a*]quinoline-10-carboxylic acid (6hB). ¹³C-NMR (DMSO-*d*₆): δ 17.6 (4'-C), 27.4 (6-C), 30.6 (3'-C), 41.9 (5'-C), 44.8 (5-C), 47.8 (10-C), 49.9 (10a-C), 58.8 (6a-C), 81.7 (9-C), 90.8 (6b-C), 118.1 (3-C), 118.8 (2-C), 126.0 (4a-C), 127.3 (4-C), 128.8 (12a-C), 134.0 (8-C), 137.0 (7-C), 149.3 (1-C), 172.5 (C=O), 173.6 (CO₂H), 174.6 ppm (C=O).

(5*S**,6*aS**,6*bS**,9*R**,10*S**,10*aR**)-6,6a,9,10,10a,11-Hexahydro-5-(*N*-pyrrolidine-2-one)-9-methyl-11-oxo-5*H*-6b,9-epoxyisoindolo [**2**,1-*a*]quinoline-10-carboxylic acid (6iB). ¹³C-NMR (DMSO-*d*₆): δ 15.7 (Me), 17.8 (4′-C), 25.4 (6-C), 30.6 (3′-C), 41.8 (5′-C), 47.6 (5-C), 48.2 (10-C), 54.4 (10a-C), 55.9 (6a-C), 88.4 (9-C), 88.7 (6b-C), 118.0 (1-C), 123.2 (3-C), 123.5 (4a-C), 126.2 (2-C), 127.8 (4-C), 135.5 (8-C), 137.5 (12a-C), 140.5 (7-C), 170.1 (C=O), 171.6 (CO₂H), 174.9 ppm (C=O).

(5*S**,6*aS**,6*bS**,9*S**,10*R**,10*aR**)-6,6a,9,10,10a,11-Hexahydro-5-(*N*-pyrrolidine-2-one)-9-bromo-11-oxo-5*H*-6b,9-epoxyisoindolo [2,1-*a*]quinoline-10-carboxylic acid (6jB). ¹³C-NMR (DMSO-*d*₆): δ 17.8 (4'-C), 25.2 (6-C), 30.6 (3'-C), 41.8 (5'-C), 47.5 (5-C), 51.5 (10-C), 53.8 (10a-C), 55.6 (6a-C), 88.3 (9-C), 90.5 (6b-C), 118.0 (1-C), 123.5 (3-C), 123.6 (4a-C), 126.2 (2-C), 127.8 (4-C), 136.8 (8-C), 137.3 (12a-C), 140.7 (7-C), 168.9 (C=O), 169.6 (CO₂H), 174.9 ppm (C=O).

(7S*,8aS*,8bS*,11R*,12S*,12aR*)-8,8a,11,12,12a,13-Hexahydro-7-(N-pyrrolidine-2-one)-13-oxo-7H-8b,11-epoxybenzo [h]isoindolo[2,1-a]quinoline-10-carboxylic acid (6mB). ¹H-NMR (DMSO-d₆): δ 1.88 (m, 2H, 4'-H), 2.20 (dq, 1H, 8a-H, J_{7, 8a} = 10.5, $J_{8a,8a} = J_{8a,8e} = 12.8$ Hz), 2.35–2.29 (m, 1H, 3B'-H), 2.43–2.38 (m, 1H, 3A'-H), 2.67 (d, 1H, 12a-H, $J_{12,12a} = 9.0$ Hz), 2.81 (m, 1H, 5B'-H), 3.09 (d, 1H, 12-H, $J_{12,12a} = 9.0$ Hz), 3.32 (ddd, 1H, 8e-H, $J_{8a,8e} = 2.4, J_{7,8e} = 8.0, J_{8a,8e} = 12.8$ Hz), 3.36 (m, 1H, 5A'-H), 4.51 (dd, 1H, 8a-H, $J_{8a,8e} = 2.4$, $J_{8a,8a} = 12.8$ Hz), 5.16 (d, 1H, 11-H, $J_{10,11} = 1.5$ Hz), 5.73 (dd, 1H, 7-H, $J_{7,8a} = 10.5$, $J_{7,8e} = 8.0$ Hz), 6.51 (dd, 1H, 10-H, $J_{10,11} = 1.5$, $J_{9,10} = 5.7$ Hz), 6.78 (d, 1H, 9-H, $J_{9,10} = 5.7$ Hz), 7.13 (d, 1H, 5-H, $J_{5,6} = 8.5$ Hz), 7.36 (ddd, 1H, 2-H, $J_{2,4} = 1.0$, $J_{2,3} = 7.5$, $J_{1,2} = 8.2$ Hz), 7.46 (dt, 1H, 3-H, $J_{2,3} = J_{3,4} = 7.5, J_{1,3} = 1.0$ Hz), 7.75 (d, 1H, 6-H, $J_{5,6} = 8.5$ Hz), 7.82 (dd, 1H, 4-H, $J_{2,4}$ = 1.0, $J_{3,4}$ = 7.5 Hz), 7.88 ppm (br d, 1H, 1-H, $J_{1,2}$ = 8.2 Hz); ¹³C-NMR (DMSO- d_6): δ 17.5 (4'-C) 28.1 (8-C), 30.6 (3'-C), 41.8 (5'-C), 45.2 (12a-C), 47.9 (7-C), 49.5 (12-C), 58.3 (8a-C), 81.9 (11-C), 90.5 (8b-C), 127.2, 126.5, 126.4, 126.2, 125.2, 124.3 (1-C-6-C), 125.1 (6a-C), 127.3 (14b-C), 132.9 (4a-C), 133.3 (14a-C), 134.4 (10-C), 136.6 (9-C), 170.3 (CO₂H), 173.0 (C=O), 174.7 ppm (C=O).

(55*,6aS*,6bS*,9*R**,10S*,10a*R**)-6,6a,9,10,10a,11-Hexahydro-5-(*N*-methylacetamid)-11-oxo-5*H*-6b,9-epoxyisoindolo[2,1-*a*] quinoline-10-carboxylic acid (7aB). ¹³C-NMR (DMSO-*d*₆): δ 21.9 (<u>Me</u>CO), 25.2 (6-C), 30.5 (NMe), 45.1 (5-C), 49.3 (10-C), 51.0 (10a-C), 55.4 (6a-C), 80.9 (9-C), 89.3 (6b-C), 118.1 (1-C), 123.2 (3-C), 124.1 (4a-C), 126.5 (2-C), 127.6 (4-C), 134.2 (8-C), 137.7 (7-C), 137.8 (12a-C), 169.8 (C=O), 171.1 (CO₂H), 172.9 ppm (C=O).

(55*,6aS*,6bS*,9R*,10S*,10aR*)-6,6a,9,10,10a,11-Hexahydro-5-(N-methylacetamid)-3-methyl-11-oxo-5H-6b,9-epoxyisoindolo [2,1-*a*]quinoline-10-carboxylic acid (7bB). ¹³C-NMR (DMSO-*d*₆): δ 20.5 (Me) 21.9 (MeCO), 25.3 (6-C), 30.5 (NMe), 45.1 (5-C), 49.3 (10-C), 51.0 (10a-C), 55.3 (6a-C), 80.9 (9-C), 89.3 (6b-C), 118.0 (1-C), 124.0 (4a-C), 126.7 (2-C), 128.2 (4-C), 132.3 (3-C), 134.3

V. P. Zaytsev, F. I. Zubkov, F. A. Toze, D. N. Orlova, M. N. Eliseeva, D. G. Grudinin, E. V. Nikitina, and A. V. Varlamo

Table 3

Physicochemical characteristics of tetrahydroquinolines **2f-m**, **3a-c**,**e**, **4**, **5**, 6b,9-epoxyisoindolo[2,1-*a*]quinolines **6i,jm**, **7a-c**,**e**, **8**, **9**, **10e**,**h**,**i**,**j**,**m**, **11a-c**,**e**, **12–17**, **18a-f**, 2,11b-epoxyoxirano[6, 7]isoindolo[2,1-*a*]quinolines **19a-k**, and isoindolo[2,1-a]quinolines **20**.

			E	Elemental analysis						
		Found	(%)			Calcd (%)			
Compounds	С	Н	Ν	Chemical formula	С	Н	Ν	Mp (°C)	R_{f}	IR (potassium bromide) (cm ⁻¹)
2f	62.33	5.22	12.87	C17H17N3O4	62.38	5.23	12.84	201 ^a	0.43 ^b	3295 (NH), 1669 (NCO)
2g	70.36	6.16	8.61	$C_{19}H_{20}N_2O_3$	70.35	6.21	8.64	136–138 ^c	0.34 ^d	3310 (NH), 1677 (NCO, CO)
2h	68.38	6.03	9.51	C ₁₇ H ₁₈ N ₂ O ₃	68.44	6.08	9.39	202–204 ^c	0.45 ^e	3384 (NH, OH), 1646 (NCO)
2i	72.97	6.74	9.42	$C_{18}H_{20}N_2O_2$	72.95	6.80	9.45	104–106 ^c	0.42^{f}	3379 (NH), 1670 (NCO)
2j	56.47	4.71	7.78	$C_{17}H_{17}BrN_2O_2$	56.52	4.74	7.75	157–159 ^c	0.48 ^e	3388 (NH), 1680 (NCO)
2k	62.43	5.20	12.81	C ₁₇ H ₁₇ N ₃ O ₄	62.38	5.23	12.84	144 ^a	0.38 ^g	3323 (NH), 1664 (NCO)
21	66.21	5.53	8.62	$C_{18}H_{18}N_2O_4$	66.25	5.56	8.58	217–218 ^a	-	3332 (NH), 1670, 1635 (NCO, CO ₂ H)
2m	76.41	6.49	7.99	$C_{21}H_{20}N_2O_2$	75.88	6.06	8.43	161–163 ^c	0.52^{d}	1673 (NCO), 3408 (NH)
3a	71.11	6.70	10.40	C16H18N2O2	71.09	6.71	10.36	$120 - 122^{c}$	0.28^{f}	3347 (NH), 1631 (NCO)
3b	71.78	7.11	9.85	$C_{17}H_{20}N_2O_2$	71.81	7.09	9.85	$180 - 182^{\circ}$	0.46^{b}	3337 (NH), 1631 (NCO)
3c	68.01	6.74	9.35	$C_{17}H_{20}N_2O_2$	67.98	6.71	9.33	$142 - 145^{\circ}$	0.33 ^b	3325 (NH), 1635 (NCO)
3e	67.01	6.27	9.43	$C_{14}H_{17}FN_2O_2$	66.65	5.94	9.72	$163 - 165^{\circ}$	0.45^{f}	3276 (NH), 1629 (NCO)
4	76.11	7.49	10.44	C17H20N2O	76.09	7.51	10.44	86°	0.45^{b}	3375 (NH)
5	75.07	7.89	10.93	C_1 $H_{20}N_2O$	74 97	7.86	10.93	_	0.65 ^b	3410 (NH)
6hB	63.84	4.77	6.87	$C_{21}H_{20}N_2O_6$	63.63	5.09	7.07	216 ^a	-	3526 (OH), 1657, 1630 (NCO), 1710
6iB	66.96	5.56	7.16	$C_{22}H_{22}N_2O_5$	66.99	5.62	7.10	229–231 ^a	_	(CO ₂ H) 1702, 1645 (NCO), 1745 (CO ₂ H)
6jB	55.03	4.22	6.01	C21H19BrN2O5	54.92	4.17	6.10	242 ^a	_	1691, 1650 (NCO), 1743 (CO ₂ H)
6mB	69.68	4.99	6.75	$C_{25}H_{24}N_2O_5$	69.43	5.59	6.48	235–237 ^a	-	1629 (NCO), 1710 (CO ₂ H)
7aB	65.26	5.47	7.63	$C_{20}H_{20}N_2O_5$	65.21	5.47	7.60	252 ^a	-	1687 (NCO), 1728(CO ₂ H)
7bB	65.65	5.49	7.86	C21H22N2O5	65.96	5.80	7.33	249 ^a	_	1701 (NCO), 1728 (CO ₂ H)
7cB	63.66	5.78	6.57	C ₂₁ H ₂₂ N ₂ O ₆	63.31	5.57	7.03	240 ^a	_	1683 (NCO), 1732 (CO ₂ H)
7eB	62.44	5.23	6.87	$C_{20}H_{19}FN_2O_5$	62.17	4.96	7.25	239 ^a	_	1677 (NCO), 1725 (CO ₂ H)
8B	68.76	6.07	7.69	C21H22N2O4	68.84	6.05	7.65	165–169 ^a	_	1702 (NCO, CO ₂ H)
9B	67.83	6.30	7.89	$C_{20}H_{22}N_2O_4$	67.78	6.26	7.90	140–142 ^a	_	1704 (NCO, CO ₂ H)
10eB	67.83	5.47	7.86	C ₂₀ H ₁₉ FN ₂ O ₃	67.79	5.40	7.91	201 ^c	0.75 ^e	1677 (NCO), 1676 (NCO)
10hB	67.65	5.87	7.69	$C_{20}H_{20}N_2O_4$	68.17	5.72	7.95	240°	0.53 ^h	3437 (OH), 1659, 1679 (NCO)
10iB	72.04	6.35	8.03	C ₂₁ H ₂₂ N ₂ O ₃	71.98	6.33	7.99	238–240 ^c	0.61 ^h	1696 (NCO), 1682 (NCO)
10jB	57.57	4.68	6.69	$C_{20}H_{19}BrN_2O_3$	57.84	4.61	6.75	210 ^c	0.55^{i}	1681 (NCO), 1700 (NCO)
10mB	74.68	5.99	7.75	$C_{24}H_{24}N_2O_3$	74.21	6.23	7.21	242–244 ^c	_	1674 (NCO)
11aB	70.38	6.29	8.62	$C_{19}H_{20}N_2O_3$	70.35	6.21	8.64	163–165 ^c	0.69 ^h	1643 (NCO), 1705 (NCO)
11bB	70.65	6.17	8.33	$C_{20}H_{22}N_2O_3$	70.99	6.55	8.28	209–210 ^c	0.38 ^d	1633 (NCO), 1697 (NCO)
11cB	67.33	6.01	8.15	C ₂₀ H ₂₂ N ₂ O ₄	67.78	6.26	7.90	184–185 [°]	0.25 ^d	1648 (NCO), 1687 (NCO)
11eB	66.91	5.76	8.47	C ₁₉ H ₁₉ FN ₂ O ₃	66.66	5.59	8.18	176 ^c	0.69 ^h	1647 (NCO), 1695 (NCO)
12B	73.57	7.14	9.13	C ₁₉ H ₂₂ N ₂ O ₂	73.52	7.14	9.03	149–150 ^c	0.62 ^f	1695 (NCO)
13	67.02	5.65	7.07	C22H22N2O5	66.99	5.62	7.10	183 ^a	_	1689, 1651 (NCO),1723 (CO ₂ H)
14a	46.73	3.48	5.18	$C_{21}H_{18}Br_2N_2O_5$	46.87	3.37	5.21	142–146 ^a	_	1707, 1640 (NCO), 1709 (CO ₂ H)
14b	56.38	3.77	5.89	C ₂₁ H ₁₈ Cl ₂ N ₂ O ₅	56.14	4.04	6.24	210^{a}	_	1709, 1638 (NCO), 1728 (CO ₂ H)
15	71.88	6.35	8.03	$C_{21}H_{22}N_2O_3$	71.98	6.33	7.99	250–251 ^c	0.27 ^e	1693 (NCO)
16	75.62	5.82	6.86	$C_{26}H_{24}N_2O_3$	75.71	5.86	6.79	149–151 ^c	0.48^{d}	1689 (NCO)
17	72.00	6.28	7.94	$C_{21}H_{22}N_2O_3$	71.98	6.33	7.99	136–139 ^c	0.30 ^d	1697 (NCO), 1686 (NCO)
18a	66.97	5.61	7.06	$C_{22}H_{22}N_2O_5$	66.99	5.62	7.10	184–186 ^c	0.51 ^h	1697, 1679 (NCO), 1738
18b	67.64	5.88	6.84	$C_{23}H_{24}N_2O_5$	67.63	5.92	6.86	198 ^c	0.69 ^h	$1690 (NCO), 1733 (CO_2Me)$
18c	67.58	5.91	6.76	$C_{23}H_{24}N_2O_5$	67.63	5.92	6.86	170–172 ^c	0.63 ⁿ	1681 (NCO), 1743 (CO ₂ Me)
18d	67.59	5.92	6.90	$C_{23}H_{24}N_2O_5$	67.63	5.92	6.86	200–202 ^c	0.54 ^h	1682 (NCO), 1727 (CO ₂ Me)
18e	66.00	5.82	7.31	$C_{21}H_{22}N_2O_5$	65.96	5.80	7.33	216–217 ^c	0.51 ^h	1706, 1638 (NCO), 1741 (CO ₂ Me)
18f	70.52	4.99	6.75	C26H24N2O5	70.26	5.44	6.30	240-241 ^a	0.64 ^h	1680 (NCO), 1731 (CO ₂ Me)
19a	68.14	5.71	8.01	$C_{20}H_{20}N_{2}O_{4}$	68.17	5.72	7.95	296–298 ^c	0.40^{h}	1695, 1671 (NCO)
19b	68.85	6.03	7.63	$C_{21}H_{22}N_2O_4$	68.84	6.05	7.65	$244 - 246^{\circ}$	0.47^{h}	1687 (NCO)
19c	67.11	5.89	8.23	$C_{10}H_{20}N_2O_4$	67.05	5.92	8.23	237–239°	0.41 ^h	1692 (NCO), 1636 (NCO)
19d	64.39	5.43	6.85	$C_{22}H_{22}N_2O_4$	64.38	5.40	6.83	299–231°	0.39 ^h	1681, 1679 (NCO), 1737
									h	(CO_2Me)
19e	65.11	5.81	6.56	$C_{23}H_{24}N_2O_6$	65.08	5.70	6.60	307–309 ^e	0.47"	1693 (NCO), 1734 (CO ₂ Et)

(Continued)

					(Jonninue	<i>u)</i>			
			Е	lemental analysis						
		Found ((%)			Calcd (%)			
Compounds	С	Н	Ν	formula	С	Н	Ν	Mp (°C)	$R_{\rm f}$	IR (potassium bromide) (cm ⁻¹)
19f	65.09	5.67	6.62	C23H24N2O6	65.08	5.70	6.60	223–225 ^c	0.52 ^h	1688 (NCO), 1740 (CO ₂ Me)
19g	64.96	5.57	6.66	C23H24N2O6	65.08	5.70	6.60	188 ^c	0.50^{h}	1683 (NCO), 1730 (CO ₂ Me)
19h	63.28	5.59	7.02	$C_{21}H_{22}N_2O_6$	63.31	5.57	7.03	236–238 ^c	0.38 ^h	1699, 1638 (NCO), 1738 (CO ₂ Me)
19i	68.99	6.23	7.87	C21H22N2O4	68.84	6.05	7.65	293 ^c	0.50^{h}	1689 (NCO)
19j	73.11	5.75	6.44	C ₂₆ H ₂₄ N ₂ O ₄	72.88	5.65	6.54	202^{c}	0.32^{d}	1685 (NCO)
19k	68.98	5.89	7.34	C ₂₁ H ₂₂ N ₂ O ₄	68.84	6.05	7.65	160 ^c	0.23 ^d	1685 (NCO)
191	67.52	5.99	5.78	$C_{26}H_{24}N_2O_6$	67.82	5.25	6.08	168–170 ^c	0.42 ^h	1682, 1700 (NCO), 1735 (CO ₂ Me)
19m	71.87	5.27	7.13	C24H22N2O4	71.63	5.51	6.96	269–271 ^c	0.48^{h}	1679 (NCO)
20a	69.68	4.99	7.75	$C_{21}H_{18}N_2O_4$	69.60	5.01	7.73	220^{a}	_	1623 (NCO), 1683 (CO ₂ H)
20b	68.61	5.22	7.94	$C_{20}H_{18}N_2O_4$	68.56	5.18	8.00	220^{a}	_	1619 (NCO), 1733 (CO ₂ H)
20c	72.68	5.13	6.25	$C_{25}H_{20}N_2O_4$	72.80	4.89	6.79	180^{a}	_	1617, 1677 (NCO), 1726 (CO ₂ H)
20d	75.41	5.71	8.84	$C_{20}H_{18}N_2O_2$	75.45	5.70	8.80	201 ^c	0.70^{j}	1677 (NCO)
20e	75.01	5.73	9.84	$C_{19}H_{18}N_2O_2$	74.49	5.92	9.14	169 ^c	0.71 ^h	1642, 1693 (NCO)
20f	75.31	5.72	8.74	$C_{21}H_{20}N_2O_2$	75.88	6.06	8.43	214 ^c	0.46 ^d	1678 (NCO)
20g	79.44	5.78	7.73	C ₂₆ H ₂₂ N ₂ O ₂	79.16	5.62	7.10	262 ^c	0.43 ^d	1679, 1696 (NCO)
20h	75.43	5.78	8.79	$C_{21}H_{20}N_2O_2$	75.88	6.06	8.43	221 ^c	0.32 ^h	1682 (NCO)
20i	78.49	5.77	7.11	$C_{24}H_{20}N_2O_2$	78.24	5.47	7.60	185–187 ^c	0.76 ^h	1697 (NCO)

 Table 3

 (Continued)

^aRecrystallized from isopropanol-DMF.

^bTLC: Ethyl acetate-hexane 2:1.

^cRecrystallized from hexane–ethyl acetate.

^dTLC: Ethyl acetate.

^eTLC: Ethyl acetate-hexane 3:1.

^fTLC: Ethyl acetate–hexane 1:1. ^gTLC: Ethyl acetate–hexane 5:1.

^hTLC: Ethyl acetate–ethanol 8:1.

ⁱTLC: Ethyl acetate–hexane 4:1.

^jTLC: Ethyl acetate–ethanol 3:1.

(8-C), 135.4 (12a-C), 137.7 (7-C), 169.4 (C=O), 171.0 (CO₂H), 172.9 ppm (C=O).

(5*S**,6*aS**,6*bS**,9*R**,10*S**,10*aR**)-6,6a,9,10,10a,11-Hexahydro-5-(*N*-methylacetamid)-3-methoxy-11-oxo-5*H*-6b,9-epoxyisoindolo [2,1-*a*]quinoline-10-carboxylic acid (7cB). ¹³C-NMR (DMSO-*d*₆) 8: 173.0 (C=O), 171.1 (CO₂H), 169.0 (C=O), 155.1 (C-3), 137.7 (C-7), 134.3 (C-8), 131.3 (12a-C), 125.9 (4a-C), 119.5 (2-C), 112.7 (4-C), 111.6 (1-C), 89.3 (6b-C), 80.9 (9-C), 55.3 (6a-C), 55.2 (OMe), 50.9 (10a-C), 49.5 (10-C), 45.0 (5-C), 30.6 (NMe), 25.4 (6-C), 21.8 ppm (MeCO).

 $(55^*,6aS^*,6bS^*,9R^*,10S^*,10aR^*)-6,6a,9,10,10a,11-Hexahydro-5-(N-methylacetamid)-3-fluoro-11-oxo-5H-6b,9-epoxyisoindolo [2,1-a]quinoline-10-carboxylic acid (7dB). ¹³C-NMR (DMSO-d_6): <math>\delta$ 21.9 (MeCO), 25.1 (6-C), 30.6 (NMe), 45.1 (5-C), 49.1 (10-C), 51.0 (10a-C), 55.5 (6a-C), 81.0 (9-C), 89.3 (6b-C), 113.0 and 112.8 (2-C), 114.4 and 114.3 (4-C), 119.9 (1-C), 127.1 (4a-C), 134.2 (8-C), 137.8 (7-C), 156.9 (12a-C), 159.3 and 166.7 (3-C), 169.7 (C=O), 171.3 (CO₂H), 173.0 ppm (C=O).

(55*,6aS*,6bS*,9*R**,10S*,10a*R**)-6,6a,9,10,10a,11-Hexahydro-5-(*N*-pyrrolidine)-11-oxo-5*H*-6b,9-epoxyisoindolo[2,1-*a*]quinoline-10-carboxylic acid (8B). ¹³C-NMR (DMSO-*d*₆): δ 17.8 (3'-C and 4'-C) 23.7 (6-C), 45.2 (5-C), 46.6 (2'-C and 5'-C), 51.0 (10-C), 55.1 (10a-C), 55.7 (6a-C), 80.9 (9-C), 89.7 (6b-C), 117.7 (1-C), 123.1 (3-C), 127.0 (2-C), 127.2 (4a-C), 127.5 (4-C), 134.4 (8-C), 137.0 (12a-C), 137.6 (7-C), 169.8 (CO₂H), 173.0 ppm (C=O). $(5S^*,6aS^*,6bS^*,9R^*,10S^*,10aR^*)-6,6a,9,10,10a,11-Hexahydro-5-(N-methyl-N-ethyl)-11-oxo-5H-6b,9-epoxyisoindolo[2,1-a] quinoline-10-carboxylic acid (9B). ¹³C-NMR (DMSO-d₆): <math>\delta$ 13.45 (CH₂CH₃) 19.1 (6-C), 36.2 (NMe), 45.2 (5-C), 46.4 (NCH₂), 51.0 (10-C), 55.6 (10a-C), 59.3 (6a-C), 80.9 (9-C), 89.6 (6b-C), 117.8 (1-C), 123.1 (3-C), 127.2 (4a-C), 127.3 (2-C), 134.4 (4-C), 136.0 (8-C), 137.5 (12a-C), 137.6 (7-C), 169.7 (CO₂H), 173.1 ppm (C=O).

(5S*,6aS*,6bS*,9S*,10aR*)-6,6a,10,10a-Tetrahydro-5H-6b,9epoxyisoindolo[2,1-a]quinoline-11(9H)-ones (10a-e,h-j, 11a-d, 12B); (5S*,6aS*,6bR*,9R*,10aS*)-6,6a,10,10a-tetrahydro-.1hydroxy-5H-6b,9-epoxyisoindolo[2,1-a]quinoline-11(9H)-one (10hA); (7S*,8aS*,8bS*,11S*,12aR*)-8,8a,12,12a-tetrahydro-7-(N-pyrrolidine-2-one)-7H-8b,11-epoxybenzo[h]isoindolo [2,1-*a*]quinoline-13(11*H*)-one (10mB). Typical procedure. The solution of amine (4.15 mol) 2a-e,h-j,m, 3a-d, 5, acryloyl chloride 1.1 mL (12 mmol), and triethylamine 2.3 mL (16.7 mmol) was refluxed for 2 h in benzene (50 mL). Then the reaction mixture was cooled, poured in water (100 mL), organic layer was separated, and water layer was extracted by ethyl acetate $(3 \times 40 \text{ mL})$. Organic layers were combined and dried over magnesium sulfate. The evaporation of the solvent and recrystallization of the residue from hexane-ethyl acetate gave isoindoloquinolines 10a-e, h-j,mB, 10hA, 11a-dB, 12B, as white crystals.

					H	-NMR (400 l	dHz) δ, (J/Hz)	-					
Compound Protons	2a	3e	3a	4a	IJ	9	٢	×	5,	4	3'	NH, br s	Others
2f	4.96 dd (3.2, 11.4)	2.06 ddd (3.2, 4.9, 12.0)	2.19 q (12.0)	5.41 dd (4.9, 12.0)	7.50 dd (0.7, 2.6)	I	7.89 dd (2.6, 9.1)	6.72 d (9.1)	7.68 dd (0.9, 1.5)	6.47 m	6.47 m	7.79	3.30, m, 3.09, m, 5"-H, 2.42–2.32, m, 3" -H. 2.01–
28	4.78 dd (6.7, 8.1)	2.60 m	2.50 m	5.65 dd (8.0, 9.7)	7.49 br d (2.0)	I	7.68 dd (2.0, 8.4)	6.55 d (8.4)	7.41 dd (0.8, 1.8)	6.37 dd (1.8, 3.2)	6.29 dd (0.8, 3.2)	4.62	1.93, m, 4" -H 2.47, s, COMe, 3.23, m, 5"-H, 2.26 m, 3"-H
2h	4.66 dd (1.9, 11.3)	2.08 ddd (1.9, 5.8, 11.5)	2.14 q (11.5)	5.43 dd (5.8, 11.5)	6.58 dd (0.7, 7.6)	6.45 t (7.6)	6.25 dd (0.7, 7.6)	I	7.63 dd (0.8, 1.7)	6.44 dd (1.7, 3.2)	6.37 dd (0.8, 3.2)	4.61	2.07, m, 4"-H 9.39, s, OH, 3.20, m, 2.97, m, 5"-H, 2.40-2.29, m, 3"-H,
2i	4.61 dd (4.8, 7.0)	2.24	в	5.68 t (9.1)	6.86 d (7.7)	6.71 t (7.7)	7.05 t (7.7)	6.58 d (7.7)	I	5.93 dq (3.1)	6.12 d (3.1)	4.07	1.94-1.89, m, 4"-H 2.29, s, Me, 3.30- 3.14, m, 5"-H, 2.52, m, 3"-H,
2j	4.63 dd (4.8, 8.4)	2.25-2	.17 m	5.66 br t (9.0)	6.86 d (7.7)	6.72 t (7.7)	7.05 t (7.7)	6.59 d (7.7)	I	6.27 d (3.2)	6.25 d (3.2)	4.08	2.03, m, 4" -H 3.28–3.14, m, 5"-H, 2.55, 2.46, m, 3"-H, 2.06–1.90. m.
2k	4.80 dd (2.3, 11.1)	2.37 ddd (2.3, 5.9, 11.5)	2.27 dt (11.1, 11.5)	5.73 dd (5.9, 11.5)	6.91 d (7.6)	6.80 t (7.6)	7.12 t (7.6)	6.67 d (7.6)	I	7.33 d (3.5)	6.58 d (3.5)	4.17	4"-H 4"-H 3.29-3.18, m, 5"-H, 2.61-2.47, m, 3"-H, 2.10-2.03, m,
21	4.92 dd (2.8, 11.0)	2.11 ddd (2.8, 5.2, 11.8)	2.17 br q (11.8)	5.43 dd (5.2, 11.8)	6.93 d (7.5)	6.58 t (7.5)	7.71 d (7.5)	I	7.69 dd (0.8, 1.8)	6.48 dd (1.8, 3.2)	6.43 dd (0.8, 3.2)	8.16	4"-H 3.28, 3.04, m, 5"-H, 2.43–2.32, m, 3"-H, 1.97, m,
3a maj	4.65 dd (2.0, 12.0)	2.25 m	2.15 q (12.0)	6.19 dd (6.4, 12.0)	6.93 d (7.8)	6.72 br t (7.8)	7.04 br t (7.8)	6.59 br d (7.8)	7.39 dd (0.8. 1.8)	6.36 dd (1.8. 3.2)	6.26 dd (0.8. 3.2)	4.10	4"-H 2.20, s, NAc 2.74, s. NMe
3a min	4.70 dd (2.5, 12.0)	2.31 m	2.36 q (12.0)	5.26 dd (5.7, 12.0)	6.88 d (7.8)	6.74 br t (7.8)	7.09 br t (7.8)	6.61 br d (7.8)	7.41 dd (0.8, 1.8)	6.38 dd (1.8, 3.2)	6.26 dd (0.8, 3.2)	4.14	2.26, s, NAc 2.70, s, NMe
3b maj	4.60 dd (2.2. 11.7)	2.27 ddd (2.2. 6.9. 11.7)	2.13 q	6.16 dd (6.9, 1.7)	6.69 d	× 1 ,	6.86 dd (1.9, 8, 1)	6.52 d (8.1)	7.39 dd (0.8, 1.8)	6.35 dd (1.8. 3.2)	6.25 dd (0.8.3.2)	4.09	2.21, s, NAc 2.74, s, NMe
3b min	4.65 dd (2.6, 11.6)	2.29 ddd (2.6, 6.0, 11.6)	2.35 q (1.6)	5.24 dd (6.0, 11.6)	6.75 d (2.0)	I	6.90 dd (2.0, 8.1)	6.53 d (8.1)	7.41 dd (0.8, 1.8)	6.38 dd (1.8, 3.2)	6.30 dd (0.8, 3.2)	4.09	2.21, s, NAc 2.69, s, NMe
3c maj	4.58 dd (2.1, 11.2)	2.30 m	2.12 q (11.2)	6.17 dd (6.4, 11.2)	6.47 dd (0.7, 2.7)	I	6.68 dd (2.7, 8.7)	6.57 dd (0.7, 8.7)	7.39 dd (0.8, 1.8)	6.35 dd (1.8, 3.2)	6.25 dd (0.8, 3.2)	4.12	3.72, s, OMe, 2.20, s, NAc 2.74, s,

 Table 4

 ¹H-NMR spectra of 2-(2'-furyl)quinolines 2f,g,i-k, 3a-c,e, 4, 5 (CDCl₃) and 2h,l (DMSO-d₆).

Vol 50

NMe

			10-	Carboxylic Acids: Their Synthesis and	d Rea	activity			
3.94, s, OMe, 2.27, s, NAc 2.70, s,	NMe 2.23, s, NAc 2.78, s, NMe 2.19, s, NAc 2.72, s,	NMe 2.74–2.58, m, 5"-H and 2"-H, 1.80– 1.75, m, 3"-H and	4 ^{-1-H,} 2.59, dq, NCH ₂ CH ₃ , 2.29, s, NCH ₃ , 1.11, t (6.7) NCH ₂ CH ₃		Other	9.03, s, OH, 3.32, 2.88, m, 5"-H, 2.37, m, 3"-H, 1.03, m, 4"-H,	1.54, s, Me, 3.24, 2.94, m, 5"-H, 2.37, m, 3"-H, 1.57 -H, 2.37, m, 3"-H, 1.07 -	1.54, s, Me, 3.24, 1.54, s, Me, 3.24, m, 5"-H, 2.94, m, 5"-H, 2.37, m, 3"-H, 1.67 4"-1.07 4"-1	1.27, m, + - TI 3.28, m, 2.97, m, 5" H, 2.38, m, 3" H, 2.05, m, 4" - H
4.12 3	4.04 2 4.07 2	4.03 2	4.03 2		10a	2.67 d (8.9)	2.61 d (8.8)	2.87 d (8.8)	3.11 d (8.8)
6.30 dd (0.8, 3.2)	6.38 dd (0.7, 3.0) 6.33 br d	(3.1) 6.28 dd (0.8, 3.2)	6.28 br d (3.0)	a-e (CDCl ₃).	10 exo	I	I	I	I
6.37 dd (1.8, 3.2)	6.28 br d (3.0) 6.40 dd	(1.7, 3.1) 6.37 dd (1.8, 3.2)	6.37 dd (1.8, 3.0)	2, 15–17, 18	10 endo	3.31 d (8.9)	3.15 d (8.8)	3.11 d (8.8)	3.35 d (8.8)
0 dd 0.8, 1.8)	1 dd 0.7, 1.8) 3 br d	1.7) 9 dd 0.8, 1.8)	0 dd 0.8, 1.8)	11a-c,e, 1	6	5.13 d (1.2)	I	I	I
) dd 7.4 .7, 8.7) (5 dd 7.4 1.7, 8.8) (3 br d 7.4	8.8) (5.8) (6.13) (6.13) (7.3) (7.3) (7.3) (7.3)	t d 7.4 7.6) ()	nd 10a,e-j,	×	6.52 dd (1.7, 6.2)	6.32 d (5.5)	6.33 d (5.4)	6.81 d (5.5)
8.7) (C	6.56 8.8) (4 6.58	8.8) (8 d 6.5 7.4, (7	t 6.5 ² (7	fSO-d ₆) a	7	6.75 d (6.2)	6.63 d (5.5)	6.75 d (5.4)	6.60 d (5.5)
6.71 dd (2.7,	6.79 dt (2.9, 6.84 dt	(2.9, 7.03 dd (0.7, 7.9)	7.03 br (7.6)	3, 14 (DN	5a	6 dd 11.2)	1 dd , 9.7)	2 dd , 7.9)	1 dd 11.4)
I	Ι Ι	6.74 br dt (7.4, 7.9	6.76 br t (7.6)	Table 5 -c,e, 8, 9, 1		4.4 (3.7,	4.8 (3.9	4.4 (6.4	4.9 (2.4,
6.51 dd (0.7, 2.7)	6.63 dd (2.9, 9.3) 6.69 dd	(2.9, 9.3) 7.51 dd (0.7, 7.4)	7.56 d (7.6)	olones 6h-j, 7a	6e 6a	2.37 m	1.97 m	1.97 m	1.97 m
5.26 dd (6.0, 11.3)	6.18 dd (6.5, 11.7) 5.24 dd	(6.4, 11.2) 4.40 dd (5.2, 11.3)	4.22 dd (5.4, 11.7)	dolo[2, 1- <i>a</i>]quin	Sa	5.63 dd 8.1, 10.6)	5.48 m	61 t (8.7)	5.49 m
.34 q (11.3)	.30 m .30 m	.10 q (1.3)	.03 q (11.7)	9-epoxyisoinc	4	6.84 br d (7.6) (8	6.95 d (7.6)	7.00 d 5. (8.1)	(7.7) (7.7)
6	0 0	1.3) 2.	()	ra of 6b,	3	7.14 t (7.6)	7.06 t (7.6)	7.10 t (8.1)	7.10 br t (7.7)
2.31 m	2.17 m 2.32 m	2.32 ddd (2.1, 5.2, 1	2.26 ddd (1.8, 5.4, 11.	H-NMR spect	7	6.60 br d (7.6)	7.24 dd (7.7, 8.2)	7.14 br t (8.1)	7.27 br t (7.7)
dd 1, 11.3)	dd 0, 11.5) dd	3, 11.2) dd 1, 11.3)	dd 8, 11.7)		1	I	8.69 d (8.2)	7.77 d (8.1)	8.69 d (8.3)
4.62 (2.	4.64 (2. 4.68	4.62 (2. (2.	4.57 (1.		cm cm	B	В	V	B
3c min	3e maj 3e min	4	w	Company	Protons	6ћ	6i		6j

i)

E27

								(C0)	ntinued)							
Compounds								¹ H-NMR	(400 MHz) δ, ((J/Hz)						
Protons		1	7	3	4	5a	<i>6e</i>	<i>6a</i>	6a	٢	œ	6	$10 \ endo$	10 exo	10a	Other
7a	В	8.60 dd (1.0, 8.4)	7.30 ddd 7 (1.0, 7.6, (1. 8.4)	7.04 dt .0, 7.6)	6.95 d (7.6)	5.98 dd (6.6, 11.5)	2.02 m	1.94 m	4.82 dd (3.2, 10.5)	6.58 d (5.8)	6.48 dd (1.6, 5.8)	5.09 d (1.6)	3.09 d (9.1)	I	2.56 d (9.1)	2.43, s, NCH ₃ 2.11, s, NCOCH ₃
7b	В	8.50 d (8.5)	7.02 br d (8.5)	-	6.77 br s	5.98 dd (6.2, 11.8)	2.0	0 m	4.79 dd (3.0, 11.9)	6.59 d (5.7)	6.49 dd (1.7, 5.7)	5.03 d (1.7)	3.08 d (9.1)	I	2.57 d (9.1)	2.24, s, Me, 2.64, s, NCH ₃ , 2.14, s,
7c	В	8.54 d (9.1)	6.79 dd (2.3, 9.1)	I	6.44 d (2.3)	5.95 dd (5.8, 12.0)	1.9	7 m	4.75 dd (2.9, 11.6)	6.56 d (5.7)	6.46 dd (1.7, 5.7)	5.00 d (1.7)	3.04 d (9.1)	I	2.54 d (9.1)	NCOCH ₃ 2.63, s, OMe, 2.50, s, NCH ₃ , 2.11, s,
7e	В	8.67 dd (5.7, 8.7)	7.09 dt (2.2, 8.7)	ı.	6.79 dd 2.2, 9.3)	6.01 br dd (6.4, 10.5)	1.9	8 m	4.85 br dd (2.5, 11.8)	6.60 d (5.6)	6.51 dd (1.2, 5.6)	5.05 d (1.2)	3.11 d (9.3)	I	2.60 d (9.3)	NCOCH ₃ 2.67, s, NCH ₃ , 2.15, s,
×	В	8.57 dd (1.5, 8.3)	7.27–7.1′	7 m (7.66 dd 1.2, 7.6)	6.01 br s	2.2	1 m	4.70 dd (2.4, 12.0)	6.60 d (5.4)	6.51 dd (1.7, 5.4)	5.05 d (1.7)	3.11 d (9.4)	I	2.58 d (9.0)	NCUCH ₃ 2.75–2.62, m, 2"-H and 5"-H, 1.78–1.75, m,
6	В	8.59 d (8.5)	7.29–7.10	6 m	7.69 d (8.0)	6.03 br s	2.2	7 m	4.66 dd (2.0, 12.1)	6.59 d (5.7)	6.51 dd (1.6, 5.7)	5.05 d (1.4)	3.12 d (9.0)	I	2.58 d (9.0)	<i>3⁻</i> -н апд 4 ⁻ - Н 2.27, br s, NCH ₃ , 2.27, m, NCH ₂ CH ₃ , 1.02,
	V	A 7.77 d (8.1)	7.29–7.10	6 m	7.67 d (7.6)	6.03 br s	2.1	7 m	4.20 dd (1.3, 12.6)	6.79 d (5.5)	6.51 dd (1.4, 5.5)	5.08 d (1.4)	3.13 d (9.4)	1	2.58 d (9.4)	t, <u>NCH₂CH₃</u> 2.27, br s,NCH ₃ , 2.27, m, N <u>CH₂CH₃, 1.09,</u>
13	В	8.66 dd (0.9, 8.4)	7.24 ddd 7 (0.9, 7.8 (0. 8.4)	.06 dt (5.95 br d (7.8)	5.46 dd (5.7, 11.3)	1.9	5 m	4.82 dd (3.1, 11.1)	6.67 d (5.7)	6.54 dd (1.7, 5.7)	4.96 d (1.7)	I	I	2.65 s	m, NCH ₂ <u>CH</u> ₃ 1.10, s, Me, 3.22, 2.93, m, 5"-H, 2.36, m, 3"-H, 1.95, m,
14a	В	8.53 d (8.4)	7.31 dd 7. (7.7, 8.4) (7.	.16 dd .7, 8.1)	7.02 d (8.1)	5.57 m	1.9	6 m	5.02 dd (1.9, 11.8)	6.78	br s	5.60 br s	I	I	I	4"-H 3.24, m, 2.95, m, 5"-H, 2.40, m, 3"-H, 2.05, m,
14b	В	8.56 br d (8.1)	7.31 dd 7 (7.6, 8.1) (7.	17 dt .6, 8.1)	7.03 d (8.1)	5.56 dd (5.6, 12.1)	1.9	6 m	5.07 dd (2.8, 1.5)	6.82 d (5.6)	6.79 dd (1.7, 5.6)	5.60 d (1.7)	I	I	I	4"-H 3.24, m, 2.97, m, 5"-H, 2.38, m, 3"-H, 2.06, m, 4"-H

V. P. Zaytsev, F. I. Zubkov, F. A. Toze, D. N. Orlova, M. N. Eliseeva, D. G. Grudinin, E. V. Nikitina, and A. V. Varlamo

Vol 50

Table 5

10-Carboxylic Acids: Their Synthesis and Reactivity -... 5.07, m, 5"-H, 2.49, m, 3"-H, 2.02, m, 4"-H m, 5" -H 2.49, m, 3"-H, 2.01, 3.24, m, 3.10, m, 4"-H 3.23, 3.08, m, 5"-H, 2.50, m, 3"-H, 2.02, m, 4" -H NCOCH₃ 2.25, s, NCH₃, 2.47, m, NCH₂CH₃ 1.02, d (7.1), Me, 3.19, 3.07, (Continued) 5"-H, 2.51, m, 3"-H, 2.05, m, 9.32, s, OH, 3.20, 3.07, m, 5"-H, 2.53, m, 3″-H, 2.04, m, 4″-H 1.67, s, Me, 3.25, 3.12, m, 5"-H, 2.53, m, 3"-H, 2.04, m, 2.68, s, NCH₃ 2.19, s, NCOCH₃ 2.30, s, Me, NCH₂CH₃, 1.10, NCOCH₃ 3.74, s, OMe, 2.68, s, NCH₃ 2.17, s, NCOCH₃ 2.72, s, NCH₃ 9.25, s, OH, 3.20, 3.07, m, 2.71, s, NCH 2.22, s, 2.23, s, t (6.7), m, 4″-H 4"-H 2.67 dd 2.69 dd (3.4, 8.7) 2.81 dd (3.7, 8.7) 2.77 dd (3.2, 8.7) 2.82 dd (3.0, 8.5) 2.65 dd (3.3, 8.6) 2.66 dd (3.3, 8.8) 2.62 dd (3.3, 8.6) (3.4, 8.7)(3.5, 8.7)2.64 dd (3.4, 8.7)2.66 dd 2.19 d (3.5)2.77 1.99 br dd (3.4, 11.8) 2.61 dd (3.0, 11.8) 2.17 dt (3.3, 11.5) (8.7, 11.8) (3.2, 11.8) 2.27 ddd (3.3, 4.4, 2.13 dt (3.3, 11.5) 2.28 ddd (3.4, 4.5, 11.9)2.02 dd (3.5, 4.4, (3.4, 4.5, 11.8)2.68 dq (3.5, 4.3) 2.28 ddd 2.29 ddd Ш 11.8)11.8) 2.02 1 1.68 dd (8.8, 11.5) 1.72 dd (8.7, 11.8) 1.65 dd (8.7, 11.8) 2.29 dd (8.5, 11.8) 1.62 dd (8.6, 11.5) (8.6, 11.8) (8.7, 11.8) (8.7, 11.9) (8.7, 11.8) 1.67 dd 1.66 dd pp 1.68 dd 1.66 dd 1.77 0 I با br d (4.3) 5.11 br d (3.3) 5.07 br d (3.3) 5.17 br d (3.1) 5.11 dd (1.2, 4.4) (1.6, 4.4)(1.9, 4.4)(1.6, 4.5)5.11 dd (1.6, 4.5)5.12 dd 5.10 dd 5.11 dd L T 4.91 6.45 br d (5.9) 6.42 br d (5.5) 6.48 dd (1.2, 5.6) 6.49 dd (1.6, 5.8) 6.47 dd (1.2, 5.0) 6.47 dd (1.3, 5.5) (1.6, 5.9)(1.6, 5.7)(1.9, 6.2)6.48 dd 6.45 dd 6.42 d 6.50 d 6.47 dd (5.6)(5.7) 6.42 d 6.42 d (5.0) 6.32 d 6.45 d 6.41 d 6.42 d (5.5) 6.39 d (5.5) 6.46 d 6.46 d (5.6) (5.7) 6.42 d 6.50 d (5.9) (5.9) (5.7) (6.2) (5.8) (5.6)4.55 dd (3.0, 11.4) 4.63 dd (3.7, 10.6) 4.31 dd (1.9, 13.1) 4.71 dd (3.1, 11.8) 4.59 dd (3.1, 11.5) 4.59 dd (2.9, 11.2) 4.61 dd (3.3, 11.5) 4.56 dd (2.8, 11.5) 4.49 dd (2.5, 12.3) (3.5, 11.4)(5.0, 11.0)4.62 dd 4.62 dd Ξ (11.4)2.13 q (11.5) 2.09 q (11.5) 2.00 q (12.3) 2.32 14 Ε d 2.17 m 2.20 m Ξ 2.17 - 2.33Ξ 2.16 m 2.48 2.11 2.17 ddd (3.5, 6.4, 2.25 ddd (2.8, 6.1, 11.5) 2.30 m 2.19 m Ξ 11.4) 2.49 5.68 dd (6.4, 12.0) 5.79 dd (7.5, 11.2) 5.66 dd (6.4, 11.4) (6.1, 11.5)6.14 dd (6.1, 11.5) (7.3, 10.0)5.66 dd (6.3, 11.9) 6.19 br dd 5.63 dd (6.2, 1.8) (6.4, 11.4)(7.0, 11.7) 6.19 dd 6.18 dd 4.16 br s 5.65 dd br s7.80 br s6.70 dd (2.9, 9.1)7.07 br t 7.00 br d 7.25 ddd 7.05 dt 6.99 dd (0.8, 6.7, (0.8, 6.7) (0.8, 6.7) (3.1, 9.3)6.71 dd 6.66 d (7.5) 6.98 d 6.51 d 6.62 d 6.98 d (1.9) (7.5) (7.6)(7.7) (7.5) 6.80 7.13 dd (7.5, 8.1) (1.0, 7.6, (1.0, 7.6) 7.09 dt 7.10 t (7.5) (7.5) (7.6)7.07 t (7.7) 7.07 1 I I L I 7.07 br d (8.5) 7.26 dd (7.7, 8.4) 7.28 dd (7.5, 8.4) 7.26 dd (7.6, 8.3) 7.23 ddd 6.97 ddd (2.9, 8.5, 6.79 dd (1.9, 9.0) (3.1, 8.1, 6.95 d 6.97 ddd (8.1)d (7.5) 8.6) 9.3) 9.2) 6.97 (8.4) 8.68 dd (0.8, 8.6) 8.72 dd (5.1, 9.2) 8.68 dd (1.0, 8.4) (4.9, 9.3)8.73 d 8.70 d (8.4) q Ч 8.72 dd 8.66 d (8.4) (8.3) (8.5) 8.61 d (9.0) 8.58 T Т ◄ B B æ B B B B B B m 10h 11a 11b 11e 10e 11c 10j 10i 2 15

February 2013 5-Amido- and 5-Amino-Substituted Epoxyisoindolo[2,1-a]tetrahydroquinolines and

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

E29

								Co II	able 5 ntinued)							
Compounds								¹ H-NMR	(400 MHz) δ,	(J/Hz)						
Protons		1	7	3	4	5a	<i>be</i>	6 <i>a</i>	6a	7	æ	6	10 endo	10 exo	10a	Other
16	В	8.71 d (8.3)	ಡ	7.06 t (7.6)	7.00 br d (7.6)	5.69 dd (6.8, 11.5)	2.16 ddd (3.2, 6.8, 11.5)	2.19 q (11.5)	4.65 dd (3.2, 6 11.5)	5.57 d (5.7)	6.36 dd (0.5, 5.7)	5.23 br d (4.2)	I	3.89 br t (4.2)	2.93 d (4.2)	3.22, 3.09, m, 5"-H, 7.20, m, Ph 2.50, m, 3"- H, 2.02, m, 4"- H
17	B	8.67 dd 1.0, 8.4)	7.23 ddd (1.0, 7.7, 8.4)	7.02 dt (1.0, 7.7)	6.95 dd (1.0, 7.7)	5.64 dd (6.0, 12.4)	2.09 ddd (2.8, 6.0, 12.4)	2.14 q (12.4)	4.50 dd (2.8, 6 12.4)	5.37 d (5.8)	6.49 dd (1.7, 5.8)	4.97 dd (1.7, 4.7)	1.15 d (11.9)	2.51 dd (4.7, 11.9)	I	1.10, s, Me, 1.15, m, 3.06, m, 5"-H 2.51, m, 3"-H, 1.98, m, A"-H
18a	B	8.64 dd 1.1, 8.5)	7.25 ddd (1.0, 7.8, 8.5)	7.07 dt (1.1, 7.8)	7.00 dd (1.0, 7.8)	5.69 dd (6.0, 12.4)	2.17 ddd (2.5, 6.0, 12.4)	2.34 br q (12.4)	4.62 dd (2.5, 6 12.4)	5.52 d (5.7)	6.55 dd (1.6, 5.7)	5.24 d (1.6)	3.05 d (9.0)	I	2.83 d (9.0)	3.83, s, Me, 3.25, 3.11, m, 5"-H 2.52, m, 3"-H, 2.05, m, 4"-H
18b	B	8.63 dd 1.0, 8.5)	7.22 dt (1.0, 7.7)	7.05 dt ((1.0, 7.7)	6.97 br dd (1.0, 7.7)	5.66 dd (6.0, 12.4)	2.16 ddd (2.4, 6.0, 12.4)	2.32 q (12.4)	4.60 dd (2.4, 6 12.4)	5.51 d (5.7)	6.53 dd (1.5, 5.7)	5.21 d (1.5)	3.03 d (9.0)	I	2.79 d (9.0)	$\begin{array}{c} 4.27, m, \\ 4.27, m, \\ \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\$
18c	В	8.76 d (8.9)	7.29 br dd (7.7, 8.9)	7.08 br t (7.7)	7.01 br d (7.7)	5.70 dd (5.8, 12.1)	2.20 m	2.35 br q (12.1)	4.56 br d ((12.1)	5.56 d (5.7)	6.32 dd (1.7, 5.7)	I	3.09 d (8.9)	1	2.87 d (8.9)	3.81, s,OMe, 3.25,3.13, m,H- 5" 1.71,d (1.7), Me,2.52, m, H- 3",2.06, m, H-
18d	B	8.66 br d (8.4)	7.25 ddd (1.0, 7.5, 8.4)	7.07 dt (1.0, 7.5)	6.99 dd (1.0, 7.5)	5.67 dd (6.0, 12.4)	2.14 ddd (2.6, 6.0, 12.4)	2.27 br q (12.4)	4.55 dd (2.6, 12.4)	6.57	S	5.12 s	I	I	2.57 s	3.78, s, OMe, 3.24, 3.10, m, 5"-H 1.31, s, Me, 2.50, m, 3"- H, 2.03, m, 4"-
18e	B	8.54 dd 0.9, 8.1)	ri	6.96 br t (7.5)	7.22 m	5.99 dd (7.2, 10.7)	1.94 m	2.02 m	4.84 dd (2.5, (10.0)	5.60 d (5.7)	6.48 dd (1.6, 5.7)	5.06 d (1.6)	3.16 d (9.2)	I	2.70 d (9.2)	3.59, s, OMe, 2.61, s, NCH ₃ 2.11, s, NCCCH.
20a	-	8.39 dd 0.9, 7.6)	7.42 t (7.6)	7.26 dt (0.9, 7.6)	7.12 br d (7.6)	5.68 dd (5.7, 12.1)	2.71 ddd (2.0, 5.7, 12.1)	1.92 q (12.1)	5.41 dd (2.0, 8 12.1)	3.04 d (7.6) 7	'.86 t (7.6)	8.06 br d (7.6)	I	I	I	3.18, 2.89, br q, 5"-H 2.39, m, 3"-H, 1.92, m, 4" -H

Vol 50

20b	8.54 d (8.4)	7.33 ddd (1.0, 7.6,	7.10 br t (7.6)	7.08 d (7.6)	6.25 dd (6.6, 11.5)	2.20 m	2.16 m	4.81 m 7	.87 dt (0.9, 7.7)	7.79 t (7.7)	8.03 br d (7.7)	I	I	2.67, s, NCH ₃ 2.21, s,
20d	8.55 d (8.2)	8.4) 7.37 br dd (7.6, (7.15 dt (1.0, 7.6)	7.09 br d (7.6)	l 5.82 dd (6.3, 12.3)	2.67 ddd (2.4, 6.3	1.75 q (12.3)	4.94 dd (2.4, 7 12.3)	.50 d (7.5)	7.63 dt (1.0, 7.5)	7.54 br t (7.5)	7.95 d (7.5)	I	NCUCH ₃
20e	8.56 d (7.5)	8.2) 7.38 br t (7.5) (7.15 dt (0.7, 7.5)	7.12 br d (7.5)	l 6.35 dd (6.2, 12.1)	2.70 ddd (2.4, 6.2,	1.69 q (12.1)	4.94 dd (2.4, 7 12.1)	.52 d (7.5)	7.64 dt (0.8, 7.5)	7.55 t (7.5)	7.96 d (7.5)	I	2.67, s, NCH ₃ 2.24, s,
20f	8.56 d (8.2)	7.37 br dd (7.6, 8.2)	7.15 br t (7.6)	7.10 br d (7.6)	l 5.82 dd (6.1, 12.3)	12.1) 2.64 ddd (2.3, 6.1, 12.3)	1.74 q (12.3)	4.89 dd (2.3, 7 12.3)	.31 d (7.5)	7.49 t (7.5)	7.28 d (7.5)	I	I	2.80, s, Me, 3.13–3.07, m, 5"-H 2.55, m,
20g	8.43 dd (1.9, 8.1)	7.48 dd (1.8, 8.1)	a	تە	5.78 dd (6.2, 12.1)	2.64 ddd (2.5, 6.2, 12.1)	1.73 q (12.1)	4.86 dd (2.5, 12.1)	R	7.58 t (7.5)	લ	I I	I	7 - 17, 2.02, 111, 4" - H 7.42-7.00, m, H- Ar, 3.04, m, 5"- H 2.45, m, 3"-H, 1.05, m, 4"-
20h	8.47 dd (1.2, 8.1)	7.36 br dd (7.5, (8.1)	7.16 dt (1.2, 7.5)	7.06 br d (7.5)	l 5.64 dd (6.0, 12.1)	2.62 ddd (2.3, 6.0, 12.1)	1.73 q (12.1)	5.18 dd (2.3, 7 12.1)	.65 d (8.1)	7.52 dt (0.7, 8.1)	I	7.63 br s	I	1.25, m, 4 H 2.44, s, Me, 3.18, 2.92, m, 5"-H 2.37, m,
^a Chemical shifts	and spin-spin	coupling cor	nstants we	are not de	stected.									3"-н, 1.93, m, 4″-Н

February 2013	5-Amido- and 5-Amino-Substituted Epoxyisoindolo[2,1-a]tetrahydroquinolines and
	10-Carboxylic Acids: Their Synthesis and Reactivity

Ц.	Table 6	I-NMR spectra of 2,11b-epoxyoxirano[6,7]isoindolo[2,1-a]quinolines 19a-k (CDCl ₃).
· · ·		<u> </u>

Compounds								IMN-H ¹	R (400 M	Hz) 8, (J/H	(Z)				
Protons	<u>,</u>	ç	2 ando	2 040	30	y	r	o	o	102	1,	112	110	110	Othor
	Ia	7	o enao	o exo	Эa	0	-	ø	y	100	116	110	113	110	Omer
19a	3.50	4.63	1.89 dd	2.27 ddd	2.86	8.64	7.25 ddd	7.06	6.98 br	5.65 dd	2.29–2.	22 m	5.53 dd	3.44	3.21, m, 3.07, m, 5"-H 2.50, m, 3"-F
	q	d d	(9.2,	(3.7, 4.8,	pp	dd	(0.9, 7.5, 0.9, 1.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0	dt	dd (0.9,	(7.8, 0.0)			(6.3,	р ç	2.02, m, 4″-H
	(3.4)	(4.8)	12.8)	12.8)	(3.7, 9.2)	(0.9, 8.4)	8.4)	(0.9, 7.5)	(c./	(c.k			8.3)	(5.4)	
19b	3.55	I	1.96 dd	2.01 dd	2.91	8.67 d	7.28 dd	7.09	7.01 d	5.66 dd	2.27	ш	4.50 m	3.32	1.58, s, Me, 3.26, m, 3.11, m, 5"-H
	q		(9.2,	(4.0,	pp	(8.2)	(7.7, 8.2)	br t	(7.7)	$\binom{a}{2}$				p	2.51, m, 3"-H, 2.04, m, 4"-H
	(3.3)		12.8)	12.8)	(4.0, 9.2)			(7.7)						(3.3)	
19c	3.48	4.62	1.88 dd	2.26 ddd	2.84	8.62	7.25 ddd	7.06	7.00 br	6.17 dd	2.25 ddd	2.18 q	4.52 dd	3.43	2.68, s, NCH ₃ 2.19, s, NCOCH ₃
	q	p	(9.2,	(3.8, 4.9,	pp	dd	(0.8, 7.5,	dt	d (7.5)	(6.2,	(2.9, 6.2,	(12.0)	(2.9,	p	
	(3.3)	(4.9)	12.7)	12.7)	(3.8, 2.3)	(1.0, 0.1)	8.4)	(1.0, 1.0,		12.0)	12.0)		12.0)	(3.3)	
194	3 55	4 85	3 <i>77</i> d	I	9.2) 3.01 d	8.4) 8.60	7 25 444	(c./	7 01 hr	5 67 44	2 26 ddd	236.0	4 53 dd	3 48	381 s Me 326 m 311 m 5"-H
	с Ч	20-3 20-3	(6.4)		(6.4)	old dd	(1.0.7.7	dt.	10 LC L	(5.8	0.5 5 8	12.3)	0.5	о 1. 1.	2.53 m 3"-H 2.05 m 4"-H
	(3.3)	2				(1.0.	8.4)	(1.0.		(2.3) 12.3)	12.3)	(0.2.1)	(2.3)	(3.3)	
						8.4)	(7.7)							
19e	3.53	4.82	3.24 d	I	2.98 d	8.59	7.23 ddd	7.06	6.99 dd	5.65 dd	2.25 ddd	2.34 dt	4.50 dd	3.46	4.24, m, OCH ₂ CH ₃ , 1.32, t (7.1),
	p	s	(9.4)		(9.4)	dd	(1.0, 7.7,	dt	(1.0,	(6.1,	(2.6, 6.1,	(12.1,	(2.6,	р	OCH ₂ CH ₃ 3.25, 3.08, m, 5" -H 2.51,
	(3.3)					(1.0,	8.5)	(1.0,	7.7)	12.1)	12.7)	12.7)	12.1)	(3.3)	3" -H, 2.04, m, 4"-H
1						8.5)		7.7)							
19f	3.55	I	3.17 d	I	2.95 d	8.66	7.21 ddd	7.05	6.97 br	5.64 dd	2.24 ddd	2.32 q	4.44 dd	3.28	3.74, s, OMe, 3.25, 3.10, m, 5 ["] -H 1.5
	p		(9.2)		(9.2)	dd	(1.0, 7.5,	dt	d (7.5)	(6.0,	(2.7, 6.0,	(12.0)	(2.7,	p	s, HH, 2.49, m, 3"-H, 2.02, m, 4"-H
	(3.2)					(1.0, 8 5)	8.5)	(1.0,		12.0)	12.0)		12.0)	(3.2)	
19σ	3 61	4 66	I	I	5 CL C	8 63 d	7 25 dt	7 08 t	7 00 d	5 66 dd	6 <i>C C</i>	u	4 47 dd	3 50	3.75 s OMe 3.26 m 3.11 m 5"-
a Ì	p	s			1	(8.5)	(7.9, 8.5)	(6.7)	(6.7)	(5.9,	ì		(3.3,	þ	2.52, m, 3"-H, 2.05, m, 4"-H, 1.53,
	(3.2)									11.2)			11.2)	(3.3)	HH
19h	3.80	4.93	3.27 d	I	3.19 d	7 <i>.</i> 77 d	7.10–7	23 m	6.98 d	5.93 dd	2.19	ш	4.24 br	3.23	3.31, s, OMe, 2.51, s, NCH ₃
	р	s	(9.5)		(9.5)	(8.3)			(1.6)	(8.3,			q	q	2.04, s, NCOCH ₃
	(3.4)									10.8)			(10.8)	(3.4)	
19i	3.56	4.45	I	2.75 ddq	2.37 d	8.65	7.26 ddd	7.06	6.99 dd	5.65 dd	2.22	m	4.48 dd	3.54	3.20, 3.06, m, 5"-H, 1.23, s, Me
	p	q		(4.1, 4.7,	(4.1)	dd	(1.0, 7.3,	dt	(1.0,	(8.9,			(4.7,	q	2.51, m, 3"-H, 2.01, m, 4"-H
	(3.3)	(4.7)		7.3)		(1.0, 8.5)	8.5)	(1.0, 7.3)	7.3)	9.5)			7.5)	(3.3)	
19j	3.60	4.85	Ι	4.01 dd	3.19 d	8.70 d	9	7.11	7.04 br	5.71 dd	2.37-2.	27 m	4.62 dd	3.43	7.40–7.28, m, Ph, 3.26, 3.12, m, 5"-
	q	p į		(4.6, 5.1)	(4.6)	(8.2)		br t	d (7.7)	(7.1,			(3.6,	q	2.54, m, 3"-H,2.05, m, 4"-H
101-	(3.3) 253	(1.C) 1 2 4	r 03 C	1 46 24		F 77 0		(/./)	F 00 7	11.8) 5 67 44			11.2)	07 0	3 C - W - 7 C I II //3 LO C I C C
IJK	сс.с г	4.04 401	D UC.2	1.40 dd	I	0.00 d		1 00.7	D 66.0	DD / 0.C	7-17-7	T m 77	4.45 dd	0.49 1	3.21, 3.07, m, 3 ⁻ -H, 1.34, S, Me 2.30 3" H 3.01 4" H
	n (c c)	n 1	(177)	(1.C)		(6.0)	(6.0, 0.1)	(0.1)	(0.1)	(7.0, 11 5)			(0.C)		III, 3 TII, 2.01, III, 4 TI
	(7.0)	(1.0)		17.1)						(C.11			10.01	(7·C)	

V. P. Zaytsev, F. I. Zubkov, F. A. Toze, D. N. Orlova, M. N. Eliseeva, D. G. Grudinin, E. V. Nikitina, and A. V. Varlamo

Vol 50

^aChemical shifts and spin-spin coupling constants were not detected.

Table 7

Mass spectra (70 eV, electron impact) of tetrahydroquinolines **2f-m** and **3a-c,e, 4, 5,** 6b,9-epoxyisoindolo[2,1-*a*]quinolines **6 i,j,m 7a-c,e, 8, 9, 10a,e-j,m**, **11a-c,e, 12–17, 18a-f**, 2,11b-epoxyoxirano[6, 7]isoindolo[2,1-*a*]quinolines **19a-l**, and isoindolo[2,1-a]quinolines **20a-i**.

Compounds	$m/z \ (I_{\rm rel},\%)$
2f	327 [M ⁺] (25), 310 (88), 241 (100), 225 (28), 195 (51), 167 (24), 129 (33), 81 (49), 73 (78), 65 (14), 44 (89)
2g	324 [M ⁺] (5), 238 (100), 224 (9), 201 (6), 196 (17), 172 (6), 167 (10), 81 (5), 43 (7)
2h	298 [M ⁺] (16), 239 (9), 213 (100), 196 (15), 183 (26), 166 (11), 154 (26), 146 (16), 80 (47), 69 (22), 55 (27), 43 (54)
2i	296 [M ⁺] (12), 210 (100), 201 (14), 168 (18), 130 (15), 117(5), 95 (6), 77 (5), 43 (4)
2j	362 [M ⁺] (^{'9} Br) (14), 276 (100), 196 (33), 167 (61), 154 (11), 139 (13), 130 (62), 117 (35), 91 (18), 77 (32), 65 (29), 51 (26), 41 (61)
2k	327 [M ⁺] (26), 310 (100), 293 (13), 241 (42), 225 (33), 213 (72), 197 (12), 167 (33), 154 (11), 130 (56), 117 (14), 86 (13), 79 (27), 51 (14), 44 (29)
21	(18), 41 (28) 226 [M ⁺¹ (4) 277 (11) 241 (100) 222 (55) 105 (72) 167 (26) 140 (21) 128 (17) 115 (16) 101 (17) 80 (82) 50 (87) 42 (77)
21 2m	520 [W] (4), 277 (11), 241 (100), 222 (55), 195 (72), 107 (50), 140 (51), 128 (17), 115 (10), 101 (17), 80 (82), 59 (87), 42 (77) (32) [W+] (11) 246 (100) 217 (11) 180 (8) 167 (4) 151 (4) 127 (3) 81 (5) 41 (2)
3a	$270 [\text{M}^+](8), 227 (8), 196 (100), 168 (14), 130 (20), 118 (9), 81 (17), 56 (13), 43 (87)$
3b	284 [M ⁺] (14), 241 (7), 210 (100), 182 (7), 168 (6), 144 (8), 132 (3), 81 (3), 43 (3)
3c	300 [M ⁺] (12), 226 (100), 198 (4), 184 (4), 160 (5), 81 (3), 43 (3)
3e	288 [M ⁺] (18), 245 (27), 231 (14), 214 (100), 186 (66), 148 (21), 136 (26), 94 (18), 80 (73), 74 (17), 53 (15), 43 (29)
4	268 [M ⁺] (17), 198 (100), 167 (21), 145 (7), 130 (32), 118 (12), 81 (11), 70 (27)
5	256 [M+] (19), 198 (100), 168 (12), 161 (15), 147 (6), 130 (19), 118 (7), 81 (23), 58 (25)
6n 6i	$396 [M^{+}] (19), 311 (62), 301 (26), 224 (38), 211 (100), 184 (24), 146 (26), 152 (17), 91 (37), 80 (60), 69 (57), 55 (58), 42 (66) (100), 104 (10), 180 (10), 168 (20), 120 (18), 84 (17), 76 (22), 50 (42), 42 (58) (17), 120 (18), 120$
6i	$458 \text{ [M^+]} (79 \text{ Br}) (2) 334 (7) 276 (20) 248 (100) 220 (17) 192 (14) 166 (14) 81 (93) 69 (32) 59 (19) 43 (45)$
6m	$430 [M^+] (3), 333 (10), 301 (9), 246 (100), 217 (17), 182 (11), 101 (11), 80 (29), 43 (34)$
7a	368 [M ⁺] (26), 325 (9), 295 (13), 196 (100), 167 (8), 130 (14), 99 (9), 77 (11), 56 (10), 43 (42)
7b	382 [M ⁺] (16), 339 (35), 309 (44), 265 (22), 241 (23), 210 (100), 167 (21), 144 (29), 91 (18), 80 (34), 56 (31), 43 (15)
7c	398 [M ⁺] (11), 355 (15), 325 (12), 280 (12), 262 (24), 226 (100), 212 (15), 183 (29), 160 (37), 117 (16), 76 (13), 56 (24), 43 (30)
7e	386 [M ⁺] (7), 343 (23), 313 (12), 287 (12), 215 (100), 186 (14), 148 (37), 99 (16), 59 (24), 43 (39)
8	300 [M] (5), 190 (78), 180 (10), 167 (22), 140 (19), 130 (63), 99 (35), 77 (30), 70 (100), 55 (26), 39 (38) $353 [M^+] (6) 207 (6) 106 (100) 167 (40) 159 (30) 130 (31) 130 (40) 118 (24) 99 (27) 80 (36) 59 (30) 43 (36)$
2 10a	$336 [\text{M}^+](20), 251(90), 233(29), 222(19), 206(22), 196(100), 180(12), 167(25), 130(30), 69(14), 55(65), 41(22), 233(29), 232(29), 23$
10a 10e	354 [M ⁺] (8), 269 (37), 251 (16), 240 (11), 224 (16), 214 (64), 185 (17), 148 (17), 81 (13), 69 (13), 55 (100), 41 (37)
10h	352 [M ⁺] (65), 297 (27), 266 (66), 239 (30), 222 (30), 184 (25), 146 (37), 17 (17), 80 (52), 69 (24), 55 (88), 43 (43)
10i	350 [M ⁺] (21), 332 (11), 303 (17), 265 (97), 247 (41), 222 (41), 210 (100), 194 (36), 183 (16), 168 (21), 130 (22), 76 (12), 55 (24), 43
101	(37)
10j	414 [M] (⁶ Br) (8), 550 (11), 517 (19), 276 (57), 250 (100), 222 (78), 196 (25), 167 (50), 150 (46), 117 (21), 86 (68), 69 (55), 58 (85), 44 (43)
10m	$386 [M^+] (25), 301 (26), 272 (10), 256 (19), 246 (100), 217 (19), 179 (17), 152 (16), 55 (19)$
11a	324 [M ⁺] (20), 281 (13), 265 (12), 251 (100), 222 (18), 206 (31), 196 (93), 167 (24), 130 (25), 77 (13), 55 (52), 43 (53)
11b	338 [M ⁺] (35), 295 (12), 265 (63), 236 (25), 220 (23), 210 (100), 182 (12), 167 (16), 144 (28), 55 (24), 43 (11)
11c	354 [M ⁺] (34), 311 (9), 281 (12), 252 (9), 236 (9), 226 (100), 160 (9), 154 (6), 55 (13), 43 (5)
11e	342 [M ⁺] (74), 299 (55), 283 (30), 269 (100), 240 (40), 224 (45), 213 (77), 177 (26), 148 (27), 127 (16), 81 (15), 55 (56), 42 (38)
12	310 [M] (29), 251 (32), 206 (24), 196 (25), 180 (57), 167 (12), 158 (13), 130 (27), 81 (12), 77 (20), 65 (11), 55 (100), 51 (11), 42 (34)
13	394 [M ⁺] (26), 309 (26), 277 (25), 250 (32), 232 (28), 222 (16), 213 (37), 196 (100), 167 (30), 130 (24), 113 (33), 80 (16), 58 (16), 43
	(36)
14	538 [M ⁺] (⁷⁹ Br) (1), 397 (12), 327 (31), 313 (87), 248 (100), 232 (23), 220 (53), 196 (47), 167 (27), 130 (41), 102 (22), 79 (66), 69
	(40), 55 (17), 41 (20)
15	350 [M ⁺] (16), 317 (18), 281 (39), 265 (96), 247 (34), 232 (24), 196 (100), 168 (15), 130 (27), 101 (42), 81 (35), 69 (57), 59 (73), 43
16	(02) 412 [M ⁺] (4) - 327 (13) - 281 (26) - 107 (100) - 147 (12) - 131 (06) - 101 (08) - 86 (61) - 77 (27) - 50 (62) - 42 (72)
17	(12), 101, (21), (21), (20), (20), 197, (100), 147, (12), 151, (20), 101, (90), 80, (01), 77, (27), 59, (02), 45, (72) 350 [M ⁺] (11), 317, (12), 265, (65), 196, (100), 167, (11), 130, (16), 103, (100), 81, (16), 69, (87), 57, (13), 43, (36)
18a	394 [M ⁺] (2), 253 (11), 197 (100), 168 (26), 130 (31), 115 (11), 84 (17), 80 (63), 68 (66), 59 (47), 43 (34)
18b	408 [M ⁺] (28), 323 (18), 317 (18), 281 (49), 250 (17), 213 (10), 196 (100), 167 (14), 99 (8)
18c	408 [M ⁺] (5), 323 (11), 281 (6), 196 (100), 168 (15), 127 (24), 99 (8), 69 (21), 59 (21), 43 (62)
18d	408 [M ⁺] (7), 323 (13), 210 (100), 194 (17), 167 (47), 130 (49), 113 (52), 95 (32), 84 (15), 76 (22), 59 (32), 43 (32)
18e 18f	582 [N1] (10), 539 (18), 509 (20), 209 (9), 252 (11), 196 (100), 16/ (10), 130 (10), 113 (14), 43 (7) 444 [M ⁺] (8), 350 (17), 331 (24), 263 (11), 246 (100), 217 (21), 180 (14), 112 (16), 80 (16), 50 (12), 42 (14)
101 19a	444 [IVE] (0), 537 (17), 551 (24), 205 (11), 240 (100), 217 (21), 180 (14), 115 (10), 80 (10), 59 (15), 45 (14) 352 [M ⁺] (18) 323 (9) 267 (100) 238 (23) 222 (28) 210 (13) 196 (23) 182 (7) 167 (9) 130 (24) 77 (7) 55 (6) 41 (6)
19b	$366 [M^+] (17), 281 (62), 252 (57), 238 (100), 224 (41), 210 (45), 150 (25), 167 (15), 150 (24), 77 (7), 55 (0), 41 (0)$
19c	341 [M ⁺] (4), 267 (100), 238 (18), 224 (21), 196 (25), 156 (11), 128 (10), 101 (10), 59 (22), 42 (34)
19d	410 [M ⁺] (46), 324 (81), 293 (53), 276 (31), 265 (49), 236 (57), 224 (88), 213 (52), 195 (100), 180 (29), 167 (38), 154 (23), 130 (55),
10	103 (17), 77 (23), 41 (20)
19e	424 [M ⁺] (49), 338 (63), 310 (22), 293 (59), 276 (39), 265 (61), 236 (74), 224 (89), 213 (64), 195 (100), 180 (33), 167 (37), 154 (21), 120 (77), 41 (22), 20 (24)
	130 (67), 41 (23), 29 (24)

(Continued)

E.	V. Nikitina,	and A.	V.	Varlamo
		Table 7		

(C	ontinued)
10	ommaca)

Compounds	m/z ($I_{\rm rel}$,%)
19f	424 [M ⁺] (43), 339 (42), 307 (36), 290 (36), 279 (53), 265 (44), 236 (100), 224 (91), 213 (72), 195 (33), 167 (37), 128 (37), 101 (36),
	76 (37), 59 (47), 43 (64)
19g	424 [M ⁺] (59), 338 (62), 280 (18), 250 (34), 224 (100), 213 (43), 195 (46), 130 (49), 128 (28), 77 (21), 41 (19)
19h	398 [M ⁺] (13), 324 (36), 223 (36), 195 (46), 167 (22), 156 (81), 139 (73), 130 (37), 113 (53), 101 (25), 75 (66), 56 (100), 43 (52)
19i	366 [M ⁺] (11), 281 (42), 252 (27), 224 (100), 195 (38), 167 (15), 144 (15), 130 (46), 80 (34), 69 (49), 43 (37)
19j	428 [M ⁺] (20), 342 (21), 314 (15), 286 (9), 224 (100), 213 (14), 195 (36), 131 (16), 103 (12), 91 (19), 77 (9)
19k	366 [M ⁺] (16), 281 (56), 252 (31), 238 (100), 224 (15), 209 (36), 196 (14), 180 (12), 167 (15), 130 (40), 77 (23), 41 (34)
191	460 [M ⁺] (20), 376 (25), 315 (21), 274 (89), 246 (100), 218 (28), 179 (61), 131 (46), 113 (27), 69 (29), 59 (42)
20a	362 [M ⁺] (30), 316 (21), 277 (89), 260 (13), 233 (100), 204 (81), 191 (4), 151 (4), 130 (6), 41 (4)
20b	350 [M ⁺] (17), 307 (17), 276 (19), 262 (19), 232 (100), 204 (43), 196 (11), 130 (11), 101 (16), 76 (23), 59 (60), 43 (65)
20c	412 [M ⁺] (35), 366 (7), 327 (100), 309 (8), 283 (79), 254 (27), 152 (11), 101 (14), 95 (18), 69 (13), 59 (15), 43 (30)
20d	318 [M ⁺] (6), 247 (4), 233 (100), 204 (15), 178 (4), 128 (9), 89 (6), 77 (22), 55 (9), 41 (17)
20e	306 [M ⁺] (5), 263 (8), 249 (11), 233 (100), 208 (4), 204 (8), 180 (3), 128 (4), 102 (4), 77 (6), 43 (4)
20f	332 [M ⁺] (6), 261 (2), 247 (100), 220 (4), 218 (4), 128 (2), 108 (3), 77 (2)
20g	394 [M ⁺] (12), 309 (100), 280 (6), 165 (4), 152 (7), 139 (6), 128 (8), 77 (9), 28 (4)
20h	332 [M ⁺] (7), 303 (5), 247 (100), 232 (7), 217 (11), 204 (9), 128 (8), 77 (12), 59 (12), 43 (52)
20i	368 [M ⁺] (16), 282 (100), 254 (12), 180 (7), 152 (7), 127 (9), 98 (14), 80 (21), 55 (13), 43 (13)

(5*S**,6*aS**,6*bS**,10*aR**)-6,6a,10,10a-Tetrahydro-1-hydroxy-5*H*-6b,9-epoxyisoindolo[2,1-*a*]quinoline-11(9*H*)-ones (10hB). ¹³C-NMR (CDCl₃): δ 18.1 (4'-C), 28.5 (10-C), 31.1 (6-C), 42.5 (3'-C), 45.9 (5'-C), 47.2 (10a-C), 48.6 (5-C), 60.2 (6a-C), 79.3 (9-C), 91.2 (6b-C), 119.3 (2-C), 119.5 (4-C), 126.3 (4a-C), 127.5 (12a-C), 127.8 (3-C), 131.2 (8-C), 137.8 (7-C), 150.1 (1-C), 175.4 (C=O), 175.7 ppm (C=O).

(5*S**,6*aS**,6*bS**,9*S**,10*aR**)-6,6a,10,10a-Tetrahydro-9-methyl-5-(*N*-pyrrolidine-2-one)-5*H*-6b,9-epoxyisoindolo[2,1-*a*]quinoline-11(9*H*)-one (10iB). ¹³C-NMR (CDCl₃): δ 18.2 (4'-C), 18.8 (Me), 25.9 (6-C), 31.2 (3'-C), 34.6 (10-C), 42.3 (5'-C), 48.1 (5-C), 51.8 (10a-C), 57.2 (6a-C), 87.2 (9-C), 89.7 (6b-C), 119.4 (1-C), 123.1 (4a-C),123.8 (3-C), 126.5 (2-C), 128.4 (4-C), 132.9 (8-C), 137.4 (12a-C), 141.2 (7-C), 172.9 (C=O), 176.0 ppm (C=O).

(55*,6aS*,6bS*,9*R**,10a*R**)-6,6a,10,10a-Tetrahydro-9-bromo-5-(*N*-pyrrolidine-2-one)-5*H*-6b,9-epoxyisoindolo[2,1-*a*]quinoline-11(9*H*)-one (10jB). ¹³C-NMR (CDCl₃): δ 18.2 (4'-C) 25.8 (6-C), 31.2 (3'-C), 39.6 (10-C), 42.3 (5'-C), 47.9 (5-C), 51.4 (10a-C), 56.9 (6a-C), 88.8 (9-C), 89.4 (6b-C), 119.4 (1-C), 123.1 (4a-C), 124.2 (3-C), 126.5 (2-C), 128.5 (4-C), 133.3 (8-C), 137.0 (12a-C), 141.9 (7-C), 171.9 (C=O), 176.1 ppm (C=O).

(7S*,8aS*,8bS*,11R*,12aR*)-8,8a,12,12a-Tetrahydro-7-(N-pyrrolidine-2-one)-7H-8b,11-epoxybenzo[h]isoindolo[2,1-a] quinoline-13(11H)-one (10mB). ¹H-NMR (CDCl₃): δ 1.81 (dd, 1H, 12endo-H, $J_{12a,12endo} = 8.7$, $J_{12exo,12endo} = 11.8$ Hz), 1.98–2.05 (m, 2H, 4'-H), 2.07 (dt, 1H, 8*a*-H, $J_{7,8a} = 10.3$, $J_{8a,8a} = J_{8a,8e} =$ 13.1 Hz), 2.43 (ddd, 1H, 12*exo*-H, $J_{12exo,12a} = 3.7$, $J_{11,12exo} = 4.4$, $J_{12exo,12endo} = 11.8$ Hz), 2.48–2.58 (m, 2H, 3'-H), 2.65 (dd, 1H, 12a-H, $J_{12a,12endo} = 8.7$, $J_{12exo,12a} = 3.7$ Hz), 2.68 (ddd, 1H, 8e-H, $J_{8a,8e} = 2.8, J_{7,8e} = 8.3, J_{8a,8e} = 13.1$ Hz), 3.08 (m, 1H, 5B'-H), 3.23 (m, 1H, 5A'-H), 4.46 (dd, 1H, 8a-H, $J_{8a,8e} = 2.8$, $J_{8a,8a} = 13.1$ Hz), 5.22 (dd, 1H, 11-H, $J_{10,11} = 1.3$, $J_{11,12exo} = 4.4$ Hz), 5.93 (dd, 1H, 7-H, $J_{7,8a} = 10.3$, $J_{7,8e} = 8.3$ Hz), 6.50 (dd, 1H, 10-H, $J_{10,11} =$ 1.3, $J_{9,10} = 6.2$ Hz), 6.52 (d, 1H, 9-H, $J_{9,10} = 6.2$ Hz), 7.17 (d, 1H, 5-H, J_{5.6} = 8.5 Hz), 7.50 (m, 2H, 2-H and 3-H), 7.71 (d, 1H, 6-H, $J_{5.6} = 8.5$ Hz), 7.78 (m, 1H, 4-H), 7.90 ppm (m, 1H, 1-H). ¹³C-NMR (CDCl₃) δ: 18.1 (4'-C), 29.2 (8-C), 29.4 (3'-C), 31.2 (12-C), 42.5 (5'-C), 46.6 (12a-C), 48.6 (7-C), 59.6 (8a-C), 79.3 (11-C), 90.9 (8b-C), 127.6, 127.4, 126.8, 126.3, 124.4, 124.2 (1-C-6-C), 125.8 (6a-C), 127.6 (14b-C), 131.4 (4a-C), 133.7 (10-C), 133.8 (9-C), 137.6 (14a-C), 172.7 (C=O), 175.7 ppm (C=O).

(5*S**,6*aS**,6*bS**,9*S**,10*aR**)-6,6a,10,10a-Tetrahydro-5-(*N*-methylacetamid)-5*H*-6b,9-epoxyisoindolo[2,1-*a*]quinoline-11 (9*H*)-one (11aB). ¹³C-NMR (CDCl₃): δ 18.8 (MeCO), 25.7 (6-C), 28.5 (10-C), 31.1 (NMe), 48.5 (5-C), 50.1 (10a-C), 56.9 (6a-C), 78.9 (9-C), 89.9 (6b-C), 119.5 (1-C), 123.8 (3-C), 124.0 (4a-C), 126.8 (2-C), 128.3 (4-C), 132.4 (8-C), 137.8 (12a-C), 137.9 (7-C), 171.9 (C=O), 172.6 ppm (C=O).

(5*S**,6*aS**,6*bS**,9*S**,10*aR**)-6,6a,10,10a-Tetrahydro-5-(*N*-methylacetamid)-3-methyl-5*H*-6b,9-epoxyisoindolo[2,1-*a*] quinoline-11(9*H*)-one (11bB). ¹³C-NMR (CDCl₃): δ 21.0 (Me), 22.1 (MeCO), 25.8 (6-C), 28.4 (10-C), 31.1 (NMe), 48.6 (5-C), 50.1 (10a-C), 56.9 (6a-C), 78.9 (9-C), 90.0 (6b-C), 119.4 (1-C), 123.7 (4a-C), 127.0 (2-C), 128.9 (4-C), 132.5 (8-C), 133.3 (3-C), 135.4 (12a-C), 137.9 (7-C), 171.9 (C=O), 172.3 ppm (C=O).

(5*S**,6*aS**,6*bS**,9*S**,10*aR**)-6,6a,10,10a-Tetrahydro-5-(*N*-methylacetamid)-3-fluoro-5*H*-6b,9-epoxyisoindolo[2,1-*a*] quinoline-11(9*H*)-one (11dB). ¹³C-NMR (CDCl₃): δ 22.0 (MeCO), 25.6 (6-C), 31.1 (NMe), 28.4 (10-C), 48.5 (5-C), 50.1 (10a-C), 56.9 (6a-C), 78.9 (9-C), 89.9 (6b-C), 113.2 and 113.0 (2-C), 115.2 and 115.0 (4-C), 132.3 (8-C), 121.3 and 121.2 (1-C), 132.0 and 131.3 (4a-C), 138.0 (7-C), 138.3 (12a-C), 160.2 and 157.8 (3-C), 171.9 (C=O), 172.5 ppm (C=O).

(5*S**,6a*S**,6b*S**,9*S**,10a*R**)-6,6a,10,10a-Tetrahydro-5-(*N*-methyl-*N*-ehtyl)-5*H*-6b,9-epoxyisoindolo[2,1-*a*]quinoline-11(9*H*)-one (12B). ¹³C-NMR (CDCl₃): δ 14.0 (CH₂<u>CH₃</u>), 19.7 (6-C), 28.5 (10-C), 36.6 (NMe), 46.8 (NCH₂), 48.5 (5-C), 57.5 (10a-C), 60.3 (6a-C), 78.9 (9-C), 90.4 (6b-C), 118.7 (1-C), 123.6 (3-C), 127.5 (2-C), 127.7 (4a-C), 127.8 (4-C), 132.6 (8-C), 137.4 (12a-C), 137.9 (7-C), 172.5 ppm (C=O). (5*S**,6*aS**,6*bS**,9*R**,10*S**,10*aR**)-6,6a,9,10,10a,11-Hexahydro-5-(*N*-pyrrolidine-2-one)-10-methyl-11-oxo-5*H*-6b,9epoxyisoindolo[2,1-*a*]quinoline-10-carboxylic acid (13). The solution of tetrahydroquinoline 2a (0.04 mol) and citraconic anhydride 16.2 mL (0.18 mol) was refluxed for 6 h in *o*-xylene (20 mL) (TLC control). After the evaporation of the solvent, separated white crystals were filtered off and washed with ether. The obtained product is isoindoloquinoline carboxylic acid 13. ¹³C-NMR (DMSO-*d*₆): δ 17.8 (4'-C), 22.2 (Me), 25.2 (6-C), 30.6 (3'-C), 41.8 (5'-C), 47.5 (5-C), 50.7 (10-C), 55.6 (10a-C), 59.3 (6a-C), 84.1 (9-C), 89.9 (6b-C), 118.1 (1-C), 123.3 (3-C), 123.6 (4a-C), 126.2 (2-C), 127.8 (4-C), 134.6 (8-C), 137.3 (7-C), 137.5 (12a-C), 170.0 (C=O), 174.7 (CO₂H), 174.9 ppm (C=O).

 $(5S^*,6aS^*,6bR^*,9R^*,10R^*,10aS^*)-6,6a,9,10,10a,11-Hexahydro-$ 5-(*N*-pyrrolidine-2-one)-10,10a-dihalogeno-11-oxo-5*H*-**6b,9-epoxyisoindolo**[2,1-*a*]quinoline-10-carboxylic acids (14a,b).The solution of dibromomaleic [10a] or dichloromaleic [10b]anhydride (3.5 mmol) in 10 mL of toluene was added to furylsubstituted amine 2a (3.2 mmol) in toluene (10 mL). The resultingmixture was stirred at room temperature for 3 days (TLC control).Separated solid was filtered off and washed with ether (2 × 10mL), giving corresponding acid 14a,b as white crystals.

 $(5S^*,6aS^*,6bR^*,9R^*,10R^*,10aS^*)-6,6a,9,10,10a,11-Hexahydro-5-(N-pyrrolidine-2-one)-10,10a-dibromo-11-oxo-5H-6b,9-epoxyisoindolo[2,1-a]quinoline-10-carboxylic acid (14a). ¹³C-NMR (DMSO-d_6): <math>\delta$ 17.8 (4'-C), 24.4 (6-C), 30.5 (3'-C), 41.8 (5'-C), 47.0 (5-C), 54.0 (6a-C), 65.5 (10-C), 67.3 (10a-C), 84.9 (9-C), 91.9 (6b-C), 118.2 (1-C), 124.3 (3-C), 124.5 (4a-C), 126.5 (2-C), 128.1 (4-C), 132.0 (8-C), 136.3 (12a-C), 140.5 (7-C), 165.1 (C=O), 167.6 (CO₂H), 174.9 ppm (C=O).

 $(5S^*,6aS^*,6bS^*,9S^*,10aR^*)-6,6a,10,10a$ -Tetrahydro-5-(Npyrrolidine-2-one)-5*H*-6b,9-epoxyisoindolo[2,1-*a*]quinoline-11(9*H*)-ones (15–17). Typical procedure. The solution of amine 2a (4.15 mmol), corresponding acid chloride (6.3 mmol) and triethylamine 1.15 mL (8.3 mmol) in benzene (50 mL) was refluxed for 2 h. Then the reaction mixture was poured in 100 mL of water, organic layer was separated and water layer was extracted by ethyl acetate (3 × 40 mL). Organic layers were combined and dried over magnesium sulfate. The evaporation of the solvents and recrystallization of the residue from hexane–ethyl acetate gave isoindoloquinolines 15–17 as white crystals.

(5*S**,6*aS**,6*bS**,9*S**,10*aR**)-6,6a,10,10a-Tetrahydro-10methyl-5-(*N*-pyrrolidine-2-one)-5*H*-6b,9-epoxyisoindolo [2,1-*a*]quinoline-11(9*H*)-one (15). ¹³C-NMR (CDCl₃): δ 17.1 (Me), 18.6 (4'-C), 25.8 (6-C), 31.3 (3'-C), 37.2 (10-C), 42.2 (5'-C), 48.0 (5-C), 56.2 (10a-C), 57.0 (6a-C), 82.4 (9-C), 90.6 (6b-C), 119.5 (1-C), 123.2 (4a-C), 123.8 (3-C), 126.5 (2-C), 128.5 (4-C), 135.5 (8-C), 136.2 (7-C), 137.4 (12a-C), 172.7 (C=O), 176.0 ppm (C=O).

(5*S**,6a*S**,6b*S**,9*S**,10a*R**)-6,6a,10,10a-Tetrahydro-10phenyl-5-(*N*-pyrrolidine-2-one)-5*H*-6b,9-epoxyisoindolo [**2**,1-*a*]quinoline-11(9*H*)-one (16). ¹³C-NMR (CDCl₃): δ 18.2 (4'-C), 25.8 (6-C), 31.2 (3'-C), 42.2 (5'-C), 47.7 (10-C), 48.0 (5-C), 56.2 (10a-C), 57.0 (6a-C), 82.6 (9-C), 91.1 (6b-C), 119.5 (1-C), 123.3 (4a-C), 123.9 (3-C), 126.6 (2-C), 126.9 (4"-C), 127.9 (3"-C and 5"-C), 128.4 (4-C), 128.5 (2"-C and 6"-C), 133.4 (8-C), 136.8 (7-C), 137.3 (1"-C), 138.8 (12a-C), 172.2 (C=O), 176.0 ppm (C=O).

(5*S**,6*aS**,6*bS**,9*S**,10*aR**)-6,6a,10,10a-Tetrahydro-10amethyl-5-(*N*-pyrrolidine-2-one)-5*H*-6b,9-epoxyisoindolo[2,1-*a*] quinoline-11(9*H*)-one (17). ¹³C-NMR (CDCl₃): δ 18.3 (Me), 20.4 (4'-C), 25.7 (6-C), 31.3 (3'-C), 36.6 (10-C), 42.3 (5'-C), 48.1 (5-C), 53.2 (10a-C), 55.4 (6a-C), 78.9 (9-C), 92.0 (6b-C), 119.5 (1-C), 123.2 (4a-C), 123.7 (3-C), 126.5 (2-C), 128.5 (4-C), 130.6 (8-C), 137.5 (12a-C), 138.4 (7-C), 176.1 (C=O), 176.5 ppm (C=O).

(5S*,6aS*,6bS*,9R*,10S*,10aR*)-6,6a,9,10,10a,11-Hexahydro-11-oxo-5H-6b,9-epoxyisoindolo[2,1-a]quinoline-10-carboxylic methyl esters (18a,c-e) and ethyl ester acid (18b): (7S*,8aS*,8bS*,11R*,12S*,12aR*)-8,8a,11,12,12a,13-hexahydro-7-(N-pyrrolidine-2-one)-13-oxo-7H-8b,11-epoxybenzo[h] isoindolo[2,1-a]quinoline-12-carboxylic acid methyl ester (18f). Typical procedure. Corresponding acids 6a,i,mB, 7aB, 13 (4.42 mmol) were refluxed in 30 mL of methanol (for 18a, 18c-f) or ethanol (18b) with the addition of one drop of H₂SO₄ for 2–6 h. Then the reaction mixture was poured in water (150 mL) and extracted by chloroform (3 \times 50 mL). The extract was dried over magnesium sulfate and evaporated under reduced pressure giving crude esters 18af. Further crystallization from hexane-ethyl acetate gave corresponding compounds as white crystals.

 $(7S^*, 8aS^*, 8bS^*, 11R^*, 12S^*, 12aR^*) - 8, 8a, 11, 12, 12a, 13$ -Hexahydro-7-(*N*-pyrrolidine-2-one)-13-oxo-7*H*-8b, 11-epoxybenzo [*h*]isoindolo[2,1-*a*]quinoline-12-carboxylic acid methyl ester (18f). ¹H-NMR (CDCl₃): δ 2.00–1.91 (m, 2H, 4'-H), 2.53–2.38 (m, 2H, 3'-H), 2.62 (ddd, 1H, 8*b*-H, $J_{8a,8b} = 3.1, J_{7,8b} = 8.1$, $J_{8a,8b} = 13.1$ Hz), 2.83 (d, 1H, 12a-H, $J_{12,12a} = 8.7$ Hz), 2.88 (d, 1H, 12-H, $J_{12,12a} = 8.7$ Hz), 3.01 (dt, 1H, 8*a*-H, $J_{7,8a} = 10.6$, $J_{8a,8a} = J_{8a,8b} = 13.1$ Hz), 3.03–2.98 (m, 1H, 5B'-H), 3.17–3.11 (m, 1H, 5A'-H), 4.46 (dd, 1H, 8a-H, $J_{8a,8b} = 3.1, J_{8a,8a} = 13.1$ Hz), 5.21 (d, 1H, 11-H, $J_{10,11} = 1.9$ Hz), 5.85 (dd, 1H, 7-H, $J_{7,8a} = 10.6, J_{7,8b} = 8.1$ Hz), 6.47 (dd, 1H, 10-H, $J_{10,11} = 1.9, J_{9,10} = 5.6$ Hz), 6.58 (d, 1H, 9-H, $J_{9,10} = 5.6$ Hz), 7.09 (d, 1H, 5-H, $J_{5,6} = 8.1$ Hz), 7.70 (br dd, 1H, 4-H, $J_{2,4} = 1.2, J_{3,4} = 7.6$ Hz), 7.92 ppm (dd, 1H, 1-H, $J_{1,2} = 8.1, J_{1,3} = 1.3$ Hz).

(1aS*,2S*,3aR*,10S*,11aS*,11bS*,11cS*)-1a,3,3a,11,11a,11c-Hexahydro-10H-2,11b-epoxyoxirano[6, 7]isoindolo[2,1-a]quinoline-4(2H)-ones (19a-c,i-k); (1aS*,2S*,3S*,3aR*,10S*,11aS*,11bS*,11cS*)-1a,2,3,3a,4,11,11a,11c-octahydro-4-oxo-10H-2,11b-epoxyoxirano [6, 7]isoindolo[2,1-a]quinoline-3-carboxylic acid methyl and ethyl esters (19d-h); (7S*,8aS*,8bS*,8cS*,9aS*,10S*,11S*,11aR*)-8,8a,8c,9a,10,11,11a,12-octahydro-12-oxo-7-(N-pyrrolidine-2-one)-7H-8b,10-epoxybenzo[h]oxirano[6, 7]isoindolo[2,1-a]quinoline-11carboxylic acid methyl ester (191); (75*,8a5*,8b5*,8c5*,9a5*,105*,11aR*)-8,8a,9a,10,11,11a-hexahydro-7-(N-pyrrolidine-2-one)-7H-8b,10-epoxybenzo[h]oxirano[6,7]isoindolo[2,1-a]quinoline-12 (8cH)-one (19m). Typical procedure. The solution of isoindolones 10a,i,mB, 11aB, 15-17, 18a-f (5.0 mmol) and m-CPBA 2.19 g (12.7 mmol) was stirred for 2 days in CH₂Cl₂ (50 mL) (TLC control). Then the reaction mixture was poured in water (100 mL) and neutralized by aqueous sodium bicarbonate until pH \sim 9. Organic layer was separated and water layer was extracted by CH_2Cl_2 (3 × 50 mL). Organic layers were combined and dried over magnesium sulfate. The evaporation of the solvent and recrystallization of the residue from the hexane-ethyl acetate mixture gave diepoxides 19a-m as white crystals.

 $(1aS^*,2S^*,3aR^*,10S^*,11aS^*,11bS^*,11cS^*)-1a,3,3a,11,11a,11c-Hexahydro-2-methyl-10-($ *N*-pyrrolidine-2-one)-10*H*-2,11b-epoxyoxirano[6,7] isoindolo[2,1-*a*]quinoline-4(2*H* $)-one (19b). Yield 81%; ¹³C-NMR (CDCl₃): <math>\delta$ 16.4 (Me), 18.2 (4'-C), 25.7 (11-C), 31.2 (3'-C), 36.9 (3-C), 42.3 (5'-C), 47.9 (10-C), 50.2 (11c-C), 51.6 (1a-C), 52.3 (3a-C), 56.7 (11a-C), 83.3 (2-C), 85.5 (11b-C), 119.3 (6-C), 123.2 (9a-C), 124.0 (8-C), 126.5 (7-C), 128.4 (9-C), 137.0 (5a-C), 171.8 (C=O), 176.0 ppm (C=O).

(**1**a**S***,**2S***,**3S***,**3***a***R***,**10S***,**11**a**S***,**11**b**S***,**11**c**S***)-**1**a,**2**,**3**,**3**a,**4**,**11**,**11**a,**11**c-Octahydro-4-oxo-10-(*N*-pyrrolidine-2-one)-**1**0*H*-2,**11**b-epoxyoxirano **[6,7] isoindolo**[**2**,**1**-*a*]quinoline-3-carboxylic acid methyl ester (**19d**). Yield 66%; ¹³C-NMR (CDCl₃): δ 18.2 (4'-C), 25.6 (11-C), 31.2 (3'-C), 42.4 (5'-C), 47.8 (3a-C), 47.9 (10-C), 48.4 (11c-C), 48.9 (1a-C), 52.3 (3-C), 53.9 (CO₂<u>Me</u>), 55.9 (11a-C), 77.6 (2-C), 85.3 (11b-C), 119.3 (6-C), 123.4 (9a-C), 124.3 (8-C), 126.6 (7-C), 128.5 (9-C), 136.9 (5a-C), 168.0 (<u>CO</u>₂Me), 170.6 (C=O), 176.0 ppm (C=O).

(1aS*,2S*,3S*,3aR*,10S*,11aS*,11bS*,11cS*)-1a,2,3,3a,4,11,11a,11c-Octahydro-2-methyl-4-oxo-10-(*N*-pyrrolidine-2-one)-10*H*-2,11b-epoxyoxirano[6,7]isoindolo [2,1-*a*]quinoline-3-carboxylic acid methyl ester (19f). Yield 52%; ¹³C-NMR (CDCl₃): δ 13.8 (Me), 18.2 (4'-C), 25.7 (11-C), 31.2 (3'-C), 42.5 (5'-C), 48.1 (3a-C), 50.0 (10-C), 50.7 (11c-C), 51.1 (1a-C), 52.4 (3-C),55.3 (CO₂Me), 56.4 (11a-C), 84.9 (2-C),85.6 (11b-C), 119.4 (6-C), 123.2 (9a-C), 124.2 (8-C), 126.6 (7-C), 128.5 (9-C), 134.5 (5a-C), 168.4 (<u>C</u>O₂Me), 170.2 (C=O), 176.2 ppm (C=O).

(1aS*,2S*,3S*,3aR*,10S*,11aS*,11bS*,11cS*)-1a,2,3,3a,4,11,11a,11c-Octahydro-3-methyl-4-oxo-10-(*N*-pyrrolidine-2-one)-10*H*-2,11b-epoxyoxirano[6,7]isoindolo[2,1-*a*]quinoline-3-carboxylic acid methyl ester (19g). Yield 29%; ¹³C-NMR (CDCl₃): δ 18.2 (Me), 18.8 (4'-C), 25.5 (11-C), 31.2 (3'-C), 42.4 (5'-C), 48.0 (10-C), 48.2 (11c-C), 48.4 (1a-C), 52.6 (3a-C), 55.4 (3-C), 56.2 (CO₂<u>Me</u>), 61.0 (11a-C), 79.9 (2-C), 85.8 (11b-C), 119.4 (6-C), 123.4 (9a-C), 124.3 (8-C), 126.6 (7-C), 128.5 (9-C), 137.0 (5a-C), 168.3 (CO₂Me), 172.5 (C=O), 176.2 ppm (C=O).

 $(1aS^*,2S^*,3S^*,3aR^*,10S^*,11aS^*,11bS^*,11cS^*)-1a,2,3,3a,4,11,11a,11c-Octahydro-4-oxo-10-($ *N*-methylacetamid)-10*H*-2,11b-epoxyoxirano[6,7]isoindolo[2,1-*a* $]quinoline-3-carboxylic acid methyl ester (19h). Yield 59%; ¹³C-NMR (CDCl₃): <math>\delta$ 21.8 (MeCO), 25.1 (11-C), 30.5 (NMe), 47.1 (10-C), 47.8 (3a-C), 48.4 (11c-C), 49.2 (1a-C), 51.4 (3-C), 53.4 (CO₂Me), 55.0 (11a-C), 77.1 (2-C), 85.2 (11b-C), 118.2 (6-C), 123.5 (9a-C), 127.9 (8-C), 128.8 (7-C), 130.6 (9-C), 137.3 (5a-C), 166.0 (CO₂Me), 168.9 (C=O), 170.9 ppm (C=O).

(1a*S**,2*S**,3*aR**,10*S**,11a*S**,11b*S**,11c*S**)-1a,3,3a,11,11a,11c-Hexahydro-3-methyl-10-(*N*-pyrrolidine-2-one)-10*H*-2,11bepoxyoxirano[6,7]isoindolo[2,1-*a*]quinoline-4(2*H*)-one (19i). Yield 35%; ¹³C-NMR (CDCl₃) & 14.0 (Me), 18.3 (4'-C), 25.6 (11-C), 31.2 (3'-C), 41.4 (3-C), 42.3 (5'-C), 47.9 (10-C), 48.3 (11c-C), 48.7 (1a-C), 56.7 (11a-C), 56.6 (3a-C), 77.8 (2-C), 86.2 (11b-C), 119.3 (6-C), 123.4 (9a-C), 124.1 (8-C), 126.6 (7-C), 128.5 (9-C), 137.0 (5a-C), 171.5 (C=O), 176.0 ppm (C=O).

(1a*S**,2*S**,3a*R**,10*S**,11a*S**,11b*S**,11c*S**)-1a,3,3a,11,11a,11c-Hexahydro-3-phenyl-10-(*N*-pyrrolidine-2-one)-10*H*-2,11bepoxyoxirano[6,7]isoindolo[2,1-*a*]quinoline-4(2*H*)-one (19j). Yield 66%; ¹³C-NMR (CDCl₃): δ 18.2 (4'-C), 25.5 (11-C), 31.2 (3'-C), 42.2 (5'-C), 47.8 (10-C), 48.6 (11c-C), 48.8 (1a-C), 51.7 (3-C), 54.9 (3a-C), 56.6 (11a-C), 77.9 (2-C), 86.3 (11b-C), 119.3 (6-C), 123.4 (9a-C), 124.2 (8-C), 126.6 (7-C), 127.3 (4"-C), 127.9 (2"-C and 6"-C), 128.5 (9-C), 128.9 (3"-C and 5"-C), 136.0 (1"-C), 136.9 (5a-C), 171.3 (C=O), 175.9 ppm (C=O).

(1a*S**,2*S**,3a*R**,10*S**,11a*S**,11b*S**,11c*S**)-1a,3,3a,11,11a,11c-Hexahydro-3a-methyl-10-(*N*-pyrrolidine-2-one)-10*H*-2,11bepoxyoxirano[6,7]isoindolo[2,1-*a*]quinoline-4(2*H*)-one (19k). Yield 78%; ¹³C-NMR (CDCl₃): δ 17.0 (Me), 18.2 (4'-C), 25.5 (11-C), 31.2 (3'-C), 38.4 (3-C), 42.3 (5'-C), 47.3 (10-C), 47.9 (11c-C), 49.2(1a-C), 55.0 (11a-C), 56.4 (3a-C), 75.0 (2-C), 86.0 (11b-C), 119.4 (6-C), 123.3 (9a-C), 124.0 (8-C), 126.5 (7-C), 128.5 (9-C), 137.1 (5a-C), 175.4 (C=O), 176.2 ppm (C=O).

(7S*,8aS*,8bS*,8cS*,9aS*,10S*,11S*,11aR*)-8,8a,8c,9a,10,-11,11a,12-Octahydro-12-oxo-7-(N-pyrrolidine-2-one)-7H-8b,10epoxybenzo[h]oxirano[6,7]isoindolo[2,1-a]quinoline-11-carboxylic acid methyl ester (191). Yield 50%; ¹H-NMR (CDCl₃): δ 1.97 (ddd, 1H, 8*a*-H, $J_{7.8a} = 10.2$, $J_{8a.8a} = 13.0$, $J_{8a.8e} = 12.3$ Hz), 2.04–1.98 (m, 2H, 4'-H), 2.57-2.47 (m, 2H, 3'-H), 2.69 (ddd, 1H, 8e-H, $J_{8a,8e} = 2.6, J_{7,8e} = 8.0, J_{8a,8e} = 12.3$ Hz), 3.09 (d, 1H, 11a-H, $J_{11,11a} = 8.7$ Hz), 3.14 (d, 1H, 11-H, $J_{11,11a} = 9.3$ Hz), 3.19-3.05 (m, 2H, 5'-H), 3.27 (d, 1H, 9a-H, $J_{8c,9a} = 3.3$ Hz), 3.57 (d, 1H, 8c-H, $J_{8c,9a}$ = 3.3 Hz), 3.89 (s, 3H, Me), 4.53 (dd, 1H, 8a-H, $J_{8a,8e} = 2.6$, $J_{8a,8a} = 13.0$ Hz), 4.85 (s, 1H, 10-H), 5.91 (dd, 1H, 7-H, $J_{7.8a} = 10.2$, $J_{7.8e} = 8.0$ Hz), 7.15 (d, 1H, 5-H, J_{5.6} = 8.4 Hz), 7.53–7.47 (m, 2H, 3-H and 2-H), 7.71 (d, 1H, 6-H, $J_{5,6} = 8.4$ Hz), 7.77 (dd, 1H, 4-H, $J_{2,4} = 1.4$, $J_{3,4} = 7.4$ Hz), 7.95 ppm (dd, 1H, 1-H, $J_{1,2} = 8.2$, $J_{1,3} = 0.7$ Hz). ¹³C-NMR (DMSO- d_6): δ 17.5 (4'-C), 28.2 (8-C), 30.6 (3'-C), 41.9 (5'-C), 46.6 (11a-C), 47.8 (7-C), 48.1 (11-C), 48.6 (9a-C), 51.2 (8c-C), 51.7 (CO2Me), 57.2 (8a-C), 78.1 (10-C), 86.8 (8b-C), 127.3, 126.5, 126.2, 125.9, 125.1, 124.2 (1-C-6-C), 125.4 (13b-C), 127.0 (6a-C), 132.8 (4a-C), 132.9 (13a-C), 169.0 (CO₂Me), 170.6 (C=O), 174.6 ppm (C=O).

(7S*,8aS*,8bS*,8cS*,9aS*,10S*,11aR*)-8,8a,9a,10,11,11a-Hexahvdro-7-(N-pyrrolidine-2-one)7H-8b,10-epoxybenzo[h] oxirano[6,7]isoindolo[2,1-a]quinoline-12(8cH)-one (19m). Yield 42%; ¹H-NMR (CDCl₃): δ 2.05 (d, 1H, 11*endo*-H, $J_{11a,11endo} = 9.6$, $J_{11exo,11endo} = 12.8$ Hz), 2.07–1.98 (m, 3H, 4'-H and 8a-H), 2.41 (d, 1H, 11*exo*-H, $J_{11a,11exo} = 4.0$, $J_{10,11exo} = 5.0$, $J_{11exo,11endo} = 12.8$ Hz), 2.55–2.50 (m, 2H, 3'-H), 2.70 (ddd, 1H, 8e-H, $J_{8a,8e} = 3.1$, $J_{7,8e}$ = 8.1, $J_{8a,8e}$ = 10.9 Hz), 2.82 (d, 1H, 11a-H, $J_{11a,11exo}$ = 4.0, $J_{11a,11endo} = 9.6$ Hz), 3.06 (m, 1H, 5'B-H), 3.22 (m, 1H, 5'A-H), 3.47 (d, 1H, 9a-H, $J_{8c,9a}$ = 3.4 Hz), 3.50 (d, 1H, 8c-H, $J_{8c,9a}$ = 3.4 Hz), 4.53 (dd, 1H, 8a-H, $J_{8a,8e} = 2.5$, $J_{8a,8a} = 13.1$ Hz), 4.73 (d, 1H, 10-H, $J_{10,11exo}$ = 5.0 Hz), 5.91 (dd, 1H, 7-H, $J_{7,8a}$ = 10.3, $J_{7,8e}$ = 8.4 Hz), 7.15 (d, 1H, 5-H, $J_{5.6}$ = 8.7 Hz), 7.51–7.46 (m, 2H, 3-H and 2-H), 7.71 (d, 1H, 6-H, J_{5.6} = 8.7 Hz), 7.85–7.76 ppm (m, 1-H and 4-H). ¹³C-NMR (DMSO-d₆): δ 18.2 (4'-C), 29.3 (8-C), 31.2 (3'-C), 32.6 (11-C), 42.6 (5'-C), 47.2 (11a-C), 48.2 (7-C), 48.5 (9a-C), 49.9 (8c-C), 58.4 (8a-C), 75.8 (10-C), 87.2 (8b-C), 127.8, 127.7, 126.9, 126.1, 126.0, 124.2 (1-C-6-C), 124.5 (13b-C), 127.5 (6a-C), 133.3 (4a-C), 133.9 (13a-C), 171.4 (C=O), 175.8 ppm (C=O).

(55*,6a5*)-5,6,6a,11-Tetrahydro-5-amido-11-oxoisoindolo [2,1-*a*]quinoline-10-carboxylic acids (20a,b); (75*,8a5*)-7,8,8a,13-tetrahydro-7-(*N*-pyrrolidine-2-one)-13-oxobenzo[*h*] isoindolo[2,1-*a*]quinoline-12-carboxylic acid (20c). Typical procedure. The solution of corresponding acid 6a,mB, 7aB (1.0 g) in phosphoric acid (15 mL) was stirred for 30 min at 85°C. The reaction mixture was cooled to room temperature and poured in 100 mL of water. Separated crystals of target products 20a-c were filtered off, dried in air, and recrystallized from a mixture of isopropanol–DMF. Acids were obtained as colorless powders.

 $(5S^*,6aS^*)$ -5,6,6a,11-Tetrahydro-5-(*N*-methylacetamid)-11oxoisoindolo[2,1-*a*]quinoline-10-carboxylic acid (20b). Yield 53%; ¹³C-NMR (DMSO-*d*₆) δ: 21.8 (MeCO), 30.8 (NMe), 49.2 (5-C), 58.8 (6a-C), 120.3 (1-C), 132.8, 131.3, 129.7, 128.7, 127.7, 127.0, 126.4, 126.2, 125.3 (Ar-C), 135.7 (12a-C), 145.7 (6b-C), 165.4 (CO₂H), 166.1 (C=O), 171.0 ppm (C=O).

(7S*,8aS*)-7,8,8a,13-Tetrahydro-7-(N-pyrrolidine-2-one)-13oxobenzo[h]isoindolo[2,1-a]quinoline-12-carboxylic acid (20c). Yield 19%; ¹H-NMR (DMSO- d_6): δ 1.79 (q, 1H, 8*a*-H, $J_{7.8a}$ = 11.6, $J_{8a,8a} = 11.9$, $J_{8a,8e} = 12.6$ Hz), 1.97–1.84 (m, 2H, 4'-H), 2.34–2.29 (m, 1H, 3B'-H), 2.45-2.39 (m, 1H, 3A'-H), 2.76 (ddd, 1H, 8e-H, $J_{8a,8e} = 3.0, J_{7,8e} = 6.9, J_{8a,8e} = 12.6$ Hz), 2.95 (m, 1H, 5B'-H), 3.22 (m, 1H, 5A'-H), 5.51 (dd, 1H, 8a-H, $J_{8a,8e} = 3.0$, $J_{8a,8a} = 11.9$ Hz), 5.77 (dd, 1H, 7-H, $J_{7,8a} = 11.6$, $J_{7,8e} = 6.9$ Hz), 7.23 (d, 1H, 5-H, $J_{5.6} = 8.5$ Hz), 7.54–7.49 (m, 2H, 2-H and 3-H), 7.84 (t, 1H, 10-H, $J_{9,10} = J_{10,11} = 7.6$ Hz), 7.88 (d, 1H, 6-H, $J_{5,6} = 8.5$ Hz), 7.93–7.91 (m, 2H, 1-H and 4-H), 8.01 (d, 1H, 9-H, $J_{9,10} = 7.6$ Hz), 8.07 (d, 1H, 11-H, $J_{10,11}$ = 7.6 Hz), 8.24 ppm (br s, CO₂H). ¹³C-NMR (DMSO-d₆): 8 17.7 (4'-C), 30.5 (8-C), 33.5 (3'-C), 42.0 (5'-C), 47.5 (7-C), 59.8 (8a-C), 132.7, 130.8, 127.7, 127.3, 126.3, 126.2, 125.9, 125.4, 123.9 (1-C-6-C and 9-C-11-C), 125.4 (12-C), 126.3 (12a-C), 128.2 (6a-C), 130.9 (14a-C), 131.4 (14b-C), 133.2 (4a-C), 147.5 (8b-C), 165.9 (CO₂H), 166.0 (C=O), 174.7 ppm (C=O).

 $(5S^*, 6aS^*)$ -6,6a-Dihydro-5-amidoisoindolo[2,1-*a*]quinoline-11 (5*H*)-ones (20d-h); (7S*,8aS*)-8,8a-dihydro-7-(*N*-pyrrolidine-2one)benzo[*h*]isoindolo[2,1-*a*]quinoline-13(7*H*)-one (20i). Typical procedure. The solution of corresponding isoindolone 10a,i, mB, 11aB, 15, 16 (1 g) in phosphoric acid (15 mL) was stirred for 1 h at 85°C. The reaction mixture was cooled to room temperature, poured in water (100 mL) and extracted by ethyl acetate (3 × 50 mL). The extract was dried over magnesium sulfate and evaporated under reduced pressure giving crude isoindoloquinolines 20d-i as white solid. Subsequent recrystallization from the hexane—ethyl acetate mixture gave white crystals of target products.

(5*S**,6*aS**)-6,6*a*-Dihydro-5-(*N*-methylacetamid)isoindolo[2,1*a*]quinoline-11(5*H*)-one (20e). Yield 39%; ¹³C-NMR (CDCl₃): δ 22.1 (MeCO), 31.2 (6-C), 31.2 (NMe), 50.1 (5-C), 58.1 (6a-C), 132.4, 132.3, 128.8, 128.3, 127.0, 124.3, 124.3, 124.2, 121.9, 120.6 (Ar-C), 137.1 (12a-C), 143.9 (6b-C), 165.8 (C=O), 171.7 ppm (C=O).

 $(5S^*,6aS^*)$ -6,6a-Dihydro-10-methyl-5-(*N*-pyrrolidine-2-one) isoindolo[2,1-*a*]quinoline-11(5*H*)-one (20f). Yield 50%; ¹³C-NMR (CDCl₃): δ 17.5 (Me), 18.2 (4'-C), 31.2 (6-C), 31.6 (3'-C), 42.3 (5'-C), 48.0 (5-C), 57.4 (6a-C), 119.3 (1-C), 131.8, 130.9, 128.4, 126.7, 124.1, 120.5 (Ar-C), 123.6 (4a-C), 126.3 (10-C), 136.9 (10a-C), 138.6 (12a-C), 144.4 (6b-C), 166.7 (C=O), 175.8 ppm (C=O). (55*,6a5*)-6,6a-Dihydro-10-phenyl-5-(*N*-pyrrolidine-2-one) isoindolo[2,1-*a*]quinoline-11(5*H*)-one (20g). Yield 53%; ¹³C-NMR (CDCl₃): δ 18.2 (4'-C), 31.2 (6-C), 31.7 (3'-C), 42.3 (5'-C), 48.0 (5-C), 57.1 (6a-C), 120.9 (1-C), 127.7 (2"-C and 6"-C), 129.7 (3"-C and 5"-C), 131.9, 131.1, 128.4, 128.1, 127.9, 127.4, 126.7, 124.3, 123.6 (Ar-C), 136.8 (10-C), 137.4 (12a-C), 141.9 (1"-C), 145.1 (6b-C), 165.3 (C=O), 175.8 ppm (C=O).

(5*S**,6*aS**)-6,6*a*-Dihydro-9-methyl-5-(*N*-pyrrolidine-2-one) isoindolo[2,1-*a*]quinoline-11(5*H*)-one (20h). Yield 77%; ¹³C-NMR (CDCl₃): δ 18.2 (4'-C), 21.4 (9-Me), 31.2 (6-C), 31.5 (3'-C), 42.3 (5'-C), 48.0 (5-C), 57.9 (6a-C), 120.6 (1-C), 133.4, 128.5, 126.8, 124.4, 124.3, 121.6 (Ar-C), 123.6 (4a-C), 132.5 (9-C), 136.9 (10a-C), 139.1 (12a-C), 141.1 (6b-C), 166.0 (C=O), 175.8 ppm (C=O).

(75^{*},8aS*)-8,8a-Dihydro-7-(*N*-pyrrolidine-2-one)benzo[*h*] isoindolo[2,1-*a*]quinoline-13(7*H*)-one (20i). Yield 77%; ¹H-NMR (DMSO-*d*₆): δ 1.65 (q, 1H, 8*a*-H, *J*_{7, 8*a*} = *J*_{8a,8*a*} = *J*_{8a,8*e*} = 11.5 Hz), 1.98–1.87 (m, 2H, 4'-H), 2.47–2.30 (m, 2H, 3'-H), 2.73 (ddd, 1H, 8*e*-H, *J*_{8a,8*e*} = 2.5, *J*_{7,8*e*} = 6.9, *J*_{8a,8*e*} = 11.5 Hz), 2.96 (m, 1H, 5B'-H), 3.22 (m, 1H, 5A'-H), 5.36 (dd, 1H, 8*a*-H, *J*_{8a,8*e*} = 2.5, *J*_{8a,8*a*} = 11.5 Hz), 5.76 (dd, 1H, 7-H, *J*_{7,8*a*} = 11.5, *J*_{7,8*e*} = 6.9 Hz), 7.23 (d, 1H, 5-H, *J*_{5,6} = 8.1 Hz), 7.90 (d, 1H, 6-H, *J*_{5,6} = 8.1 Hz), 7.93–7.46 ppm (m, 8H, Ar-H). ¹³C-NMR (DMSO-*d*₆): δ 17.6 (4'-C), 30.5 (8-C), 33.9 (3'-C), 42.0 (5'-C), 47.8 (7-C), 59.0 (8*a*-C), 132.3, 128.6, 127.4, 126.4, 126.2, 126.1, 124.8, 123.9, 123.8, 122.7 (1-C–6-C and 9-C–12-C), 124.3 (12a-C), 126.7 (6a-C), 131.0 (14a-C), 132.6 (14b-C), 133.2 (4a-C), 146.6 (8b-C), 165.0 (C=O), 174.7 ppm (C=O).

Acknowledgments. The authors are thankful to the Russian Foundation for Basic Research for the financial support of this work (grant no. 10-03-00177a).

REFERENCES AND NOTES

(a) Zhou, Y.; Qian, L.; Zhang, W. Syn Lett 2009, 843; 1
 (b) Khadem, S.; Udachin, K. A.; Enright, G. D.; Prakesch, M.; Arya, P. Tetrahedron Lett 2009, 50, 6661; 1
 (c) Mamane, V.; Fort, Y. Tetrahedron Lett 2006, 47, 2337; 1
 (d) Zhang, W.; Zheng, A.; Liu, Z.; Yang, L.; Liu, Z. Tetrahedron Lett 2005, 46, 5691; 1
 (e)Hameršak, Z.; Litvić, M.; Šepac, D.; Lesac, A.; Raza, Z.; Šunjić, V. Synthesis 2002, 2174; (f) Qiao, L.; Zhou, Y.; Zhang, W. Chin J Chem 2010, 28, 449.

[2] Boltukhina, E. V.; Zubkov, F. I.; Varlamov, A. V. Chem Heterocycl Compd (Engl Transl) 2006, 1123.

[3] (a) Ishihara, Y.; Kiyota, Y.; Goto, G. Chem Pharm Bull 1990, 38, 3024; (b) Sui, Z.; Altom, J.; Nguyen, V. N.; Fernandez, J.; Bernstein, J. I.; Hiliard, J. J.; Barrett, J. F.; Podlogar, B. L.; Ohemeng, K. A. Bioorg Med Chem 1998, 6, 735; (c) Lübbers, T.; Angehrn, P.; Gmünder, H.; Herzig, S. Bioorg Med Chem Lett 2007, 17, 4708; (d) Stevenson, G. L.; Leeson, P. D.; Rowley, M.; Sandarson, I.; Stanslield, I. Bioorg Med Chem Lett 1992, 2, 371.

[4] Kouznetsov, V. V.; Zubkov, F. I.; Cruz, U. M.; Voskressensky, L. G.; Vargas Mendez, L. Y.; Astudillo, L.; Stashenko, E. E. Lett Org Chem 2004, 1, 37.

[5] (a) Kouznetsov, V. V.; Cruz, U. M.; Zubkov, F. I.; Nikitina, E.
V. Synthesis 2007, 375; (b) Zubkov, F. I.; Zaitsev, V. P.; Piskareva, A.
M.; Eliseeva, M. N.; Nikitina, E. V.; Mikhailova, N. M.; Varlamov, A.
V. Russ J Org Chem 2010, 46, 1192.

[6] See recent reviews on Povarov reaction: (a) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721; (b) Glushkov, V. A.; Tolstikov, A. G. Russ Chem Rev 2008, 77, 137; (c) Bello, D.; Ramon, R.; Lavilla, R. Curr Org Chem 2010, 14, 4, 332.

[7] Bunce, R. A.; Herron, D. M.; Johnson, L. B.; Kotturi, S. V. J Org Chem 2001, 66, 2822.

[8] Zaitsev, V. P.; Mikhailova, N. M.; Orlova, D. N.; Nikitina, E. V.; Boltukhina, E. V.; Zubkov, F. I. Chem Heterocycl Compd (Engl transl) 2009, 45, 308.

[9] Zubkov, F. I.; Zaitsev, V. P.; Peregudov, A. S.; Mikhailova, N. M.; Varlamov, A. V. Russ Chem Bull (Engl Transl) 2007, 56, 1063.

[10] (a) Dibrommaleic anhydride synthesis see:Dubernet, M.; Caubert, V.; Guillard, J.; Viaud-Massuard, M. -C. Tetrahedron 2005, 61, 4585; (b); for dichloromaleic anhydride synthesis see:Relles, H. M. J Org Chem 1972, 37, 3630.

[11] (a) Zubkov, F. I.; Airiyan, I. K.; Dzyubenko, A. A.; Yudina, N. I.; Zaytsev, V. P.; Nikitina, E. V.; Varlamov, A. V.; Khrustalev, V. N.; Grudinin, D. G. J Heterocycl Chem 2010, 47, 400; (b) Murali, R.; Prakash Rao, H. S.; Scheeren, H. W. Tetrahedron 2001, 57, 3165.

[12] Jones, J. B. Tetrahedron 1986, 42, 3351.

[13] French, L. G.; Fenlon, E. E.; Charlton, T. P. Tetrahedron Lett 1991, 32, 851.

[14] Varlamov, A. V.; Boltukhina, E. V.; Zubkov, F. I.; Sidorenko, N. V.; Chernyshev, A. I.; Grudinin, D. G. Chem Heterocycl Compd (Engl transl) 2004, 40, 22.